IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v148y2003i1p1-13.html
   My bibliography  Save this article

Generalized network design problems

Author

Listed:
  • Feremans, Corinne
  • Labbe, Martine
  • Laporte, Gilbert

Abstract

No abstract is available for this item.

Suggested Citation

  • Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
  • Handle: RePEc:eee:ejores:v:148:y:2003:i:1:p:1-13
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00404-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2001. "On generalized minimum spanning trees," European Journal of Operational Research, Elsevier, vol. 134(2), pages 457-458, October.
    2. Moshe Dror & Mohamed Haouari, 2000. "Generalized Steiner Problems and Other Variants," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 415-436, December.
    3. Jacques Renaud & Fayez F. Boctor & Gilbert Laporte, 1996. "A Fast Composite Heuristic for the Symmetric Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 134-143, May.
    4. Laporte, Gilbert & Chapleau, Suzanne & Landry, Philippe-Eric & Mercure, Hélène, 1989. "An algorithm for the design of mailbox collection routes in urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 23(4), pages 271-280, August.
    5. Dror, M. & Haouari, M. & Chaouachi, J., 2000. "Generalized spanning trees," European Journal of Operational Research, Elsevier, vol. 120(3), pages 583-592, February.
    6. Renaud, Jacques & Boctor, Fayez F., 1998. "An efficient composite heuristic for the symmetric generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 108(3), pages 571-584, August.
    7. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    8. Charles E. Noon & James C. Bean, 1991. "A Lagrangian Based Approach for the Asymmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 39(4), pages 623-632, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garijo, Delia & Márquez, Alberto & Rodríguez, Natalia & Silveira, Rodrigo I., 2019. "Computing optimal shortcuts for networks," European Journal of Operational Research, Elsevier, vol. 279(1), pages 26-37.
    2. Ghosh, Diptesh, 2003. "A Probabilistic Tabu Search Algorithm for the Generalized Minimum Spanning Tree Problem," IIMA Working Papers WP2003-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    4. Mattia D’Emidio & Luca Forlizzi & Daniele Frigioni & Stefano Leucci & Guido Proietti, 2019. "Hardness, approximability, and fixed-parameter tractability of the clustered shortest-path tree problem," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 165-184, July.
    5. Markus Leitner, 2016. "Integer programming models and branch-and-cut approaches to generalized {0,1,2}-survivable network design problems," Computational Optimization and Applications, Springer, vol. 65(1), pages 73-92, September.
    6. Feess, E. & Walzl, M., 2004. "An analysis of corporte leniency programs and lessons to learn for EU and US policies," Research Memorandum 037, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Yi Tao & Ek Peng Chew & Loo Hay Lee & Yuran Shi, 2017. "A column generation approach for the route planning problem in fourth party logistics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 165-181, February.
    8. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    9. Ghosh, Diptesh, 2003. "Solving Medium to Large Sized Euclidean Generalized Minimum Spanning Tree Problems," IIMA Working Papers WP2003-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    10. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
    11. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    12. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    13. Chen-Wan Lin & Bang Ye Wu, 2017. "On the minimum routing cost clustered tree problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 1106-1121, April.
    14. Cosmin Sabo & Petrică C. Pop & Andrei Horvat-Marc, 2020. "On the Selective Vehicle Routing Problem," Mathematics, MDPI, vol. 8(5), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    2. Snyder, Lawrence V. & Daskin, Mark S., 2006. "A random-key genetic algorithm for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 174(1), pages 38-53, October.
    3. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
    4. Mehdi El Krari & Belaïd Ahiod & Youssef Bouazza El Benani, 2021. "A pre-processing reduction method for the generalized travelling salesman problem," Operational Research, Springer, vol. 21(4), pages 2543-2591, December.
    5. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
    6. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    7. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
    8. Pop, Petrica C. & Kern, W. & Still, G., 2006. "A new relaxation method for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 170(3), pages 900-908, May.
    9. Karapetyan, D. & Gutin, G., 2012. "Efficient local search algorithms for known and new neighborhoods for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 234-251.
    10. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    11. Jeanette Schmidt & Stefan Irnich, 2020. "New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman Problem," Working Papers 2020, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Renaud, Jacques & Boctor, Fayez F., 1998. "An efficient composite heuristic for the symmetric generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 108(3), pages 571-584, August.
    13. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
    14. M Haouari & J Chaouachi & M Dror, 2005. "Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 382-389, April.
    15. J-Y Potvin & M-A Naud, 2011. "Tabu search with ejection chains for the vehicle routing problem with private fleet and common carrier," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 326-336, February.
    16. Ghosh, Diptesh, 2003. "A Probabilistic Tabu Search Algorithm for the Generalized Minimum Spanning Tree Problem," IIMA Working Papers WP2003-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "The order picking problem under a scattered storage policy," Research Memorandum 006, Maastricht University, Graduate School of Business and Economics (GSBE).
    18. Bruce Golden & S. Raghavan & Daliborka Stanojević, 2005. "Heuristic Search for the Generalized Minimum Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 290-304, August.
    19. Kang, Seungmo & Ouyang, Yanfeng, 2011. "The traveling purchaser problem with stochastic prices: Exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 209(3), pages 265-272, March.
    20. Öncan, Temel & Cordeau, Jean-François & Laporte, Gilbert, 2008. "A tabu search heuristic for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 306-319, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:148:y:2003:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.