IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v30y2018i4p662-676.html
   My bibliography  Save this article

Exact Algorithms for Distributionally β -Robust Machine Scheduling with Uncertain Processing Times

Author

Listed:
  • Yuli Zhang

    (School of Management and Economics, Be¼ing Institute of Technology, Be¼ing 100081, China)

  • Zuo-Jun Max Shen

    (Department of Industrial Engineering and Operations Research, Department of Civil and Environmental Engineering, and TBSI, University of California, Berkeley, Berkeley, California 94720)

  • Shiji Song

    (Department of Automation, TNList, Tsinghua University, Be¼ing 100084, China)

Abstract

The β -robust machine scheduling has attracted increasing attention as an effective method to hedge against uncertainty. However, existing β -robust scheduling models rely on the normality assumption of uncertain parameters, and existing solution methods are based on branch and bound, which cannot solve problems of 45 jobs within 3,600 seconds. This paper proposes distributionally β -robust scheduling (DRS) models to handle uncertain processing times. The DRS models only require the lower bound, mean, and covariance information of processing times, and have the capability of handling both single and parallel machine problems. Another key contribution of this paper is to devise efficient parametric search (PS) methods for the DRS models. Specifically, we show that there exists a parameterized assignment problem (PAP), such that its optimal solutions are also optimal for the original problem. The proposed methods only need to perform a one-dimensional PS and solve a series of PAPs. We further propose a bidirectional PS to reduce the number of PAPs needed to be solved, and we design a speedup shortest augmentation path algorithm for these PAPs. Experimental results on both single and identical parallel machine problems show that the improved PS method outperforms existing algorithms by more than three orders of magnitude improvement in computation time for problems of 45 jobs, and it is able to solve problems of 500 jobs within 0.5 seconds.

Suggested Citation

  • Yuli Zhang & Zuo-Jun Max Shen & Shiji Song, 2018. "Exact Algorithms for Distributionally β -Robust Machine Scheduling with Uncertain Processing Times," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 662-676, November.
  • Handle: RePEc:inm:orijoc:v:30:y:2018:i:4:p:662-676
    DOI: 10.1287/ijoc.2018.0807
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0807
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Bijsterbosch & A. Volgenant, 2010. "Solving the Rectangular assignment problem and applications," Annals of Operations Research, Springer, vol. 181(1), pages 443-462, December.
    2. J. Kennington & Z. Wang, 1992. "A Shortest Augmenting Path Algorithm for the Semi-Assignment Problem," Operations Research, INFORMS, vol. 40(1), pages 178-187, February.
    3. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
    4. Jian Yang & Gang Yu, 2002. "On the Robust Single Machine Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 17-33, March.
    5. Jia Shu & Chung-Piaw Teo & Zuo-Jun Max Shen, 2005. "Stochastic Transportation-Inventory Network Design Problem," Operations Research, INFORMS, vol. 53(1), pages 48-60, February.
    6. Ioana Popescu, 2007. "Robust Mean-Covariance Solutions for Stochastic Optimization," Operations Research, INFORMS, vol. 55(1), pages 98-112, February.
    7. Max Shen, Zuo-Jun & Qi, Lian, 2007. "Incorporating inventory and routing costs in strategic location models," European Journal of Operational Research, Elsevier, vol. 179(2), pages 372-389, June.
    8. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    9. Richard L. Daniels & Panagiotis Kouvelis, 1995. "Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production," Management Science, INFORMS, vol. 41(2), pages 363-376, February.
    10. A. Baykal Hafızoğlu & Esma S. Gel & Pınar Keskinocak, 2013. "Expected Tardiness Computations in Multiclass Priority M / M / c Queues," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 364-376, May.
    11. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yunqiang & Luo, Zunhao & Wang, Dujuan & Cheng, T.C.E., 2023. "Wasserstein distance‐based distributionally robust parallel‐machine scheduling," Omega, Elsevier, vol. 120(C).
    2. Hamed Fahimi & Claude-Guy Quimper, 2023. "Overload-Checking and Edge-Finding for Robust Cumulative Scheduling," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1419-1438, November.
    3. Wu, Wei & Hayashi, Takito & Haruyasu, Kato & Tang, Liang, 2023. "Exact algorithms based on a constrained shortest path model for robust serial-batch and parallel-batch scheduling problems," European Journal of Operational Research, Elsevier, vol. 307(1), pages 82-102.
    4. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    5. Wang, Xin & Kuo, Yong-Hong & Shen, Houcai & Zhang, Lianmin, 2021. "Target-oriented robust location–transportation problem with service-level measure," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 1-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    2. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.
    3. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    4. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    5. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    6. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    7. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    8. Hussein Naseraldin & Yale T. Herer, 2008. "Integrating the Number and Location of Retail Outlets on a Line with Replenishment Decisions," Management Science, INFORMS, vol. 54(9), pages 1666-1683, September.
    9. Gang Xuan & Win-Chin Lin & Shuenn-Ren Cheng & Wei-Lun Shen & Po-An Pan & Chih-Ling Kuo & Chin-Chia Wu, 2022. "A Robust Single-Machine Scheduling Problem with Two Job Parameter Scenarios," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    10. Fathi, Mahdi & Khakifirooz, Marzieh & Diabat, Ali & Chen, Huangen, 2021. "An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network," International Journal of Production Economics, Elsevier, vol. 237(C).
    11. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Other publications TiSEM d718e419-a375-4707-b206-e, Tilburg University, School of Economics and Management.
    12. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
    13. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
    14. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    15. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    16. Jonathan Li & Roy Kwon, 2013. "Portfolio selection under model uncertainty: a penalized moment-based optimization approach," Journal of Global Optimization, Springer, vol. 56(1), pages 131-164, May.
    17. Pei, Zhi & Lu, Haimin & Jin, Qingwei & Zhang, Lianmin, 2022. "Target-based distributionally robust optimization for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 420-431.
    18. Shipra Agrawal & Yichuan Ding & Amin Saberi & Yinyu Ye, 2012. "Price of Correlations in Stochastic Optimization," Operations Research, INFORMS, vol. 60(1), pages 150-162, February.
    19. Alper Atamtürk & Gemma Berenguer & Zuo-Jun (Max) Shen, 2012. "A Conic Integer Programming Approach to Stochastic Joint Location-Inventory Problems," Operations Research, INFORMS, vol. 60(2), pages 366-381, April.
    20. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:30:y:2018:i:4:p:662-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.