IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v148y2003i2p426-435.html
   My bibliography  Save this article

Least-squares estimates in fuzzy regression analysis

Author

Listed:
  • Kao, Chiang
  • Chyu, Chin-Lu

Abstract

No abstract is available for this item.

Suggested Citation

  • Kao, Chiang & Chyu, Chin-Lu, 2003. "Least-squares estimates in fuzzy regression analysis," European Journal of Operational Research, Elsevier, vol. 148(2), pages 426-435, July.
  • Handle: RePEc:eee:ejores:v:148:y:2003:i:2:p:426-435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00423-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanaka, Hideo & Hayashi, Isao & Watada, Junzo, 1989. "Possibilistic linear regression analysis for fuzzy data," European Journal of Operational Research, Elsevier, vol. 40(3), pages 389-396, June.
    2. Kim, Kwang Jae & Moskowitz, Herbert & Koksalan, Murat, 1996. "Fuzzy versus statistical linear regression," European Journal of Operational Research, Elsevier, vol. 92(2), pages 417-434, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    2. Smimou, Kamal, 2006. "Estimation of Canadian commodity market risk premiums under price limits: Two-phase fuzzy approach," Omega, Elsevier, vol. 34(5), pages 477-491, October.
    3. Pavel Škrabánek & Jaroslav Marek & Alena Pozdílková, 2021. "Boscovich Fuzzy Regression Line," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    4. Kula, Kamile Şanlı & Apaydın, Ayşen, 2009. "Hypotheses testing for fuzzy robust regression parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2129-2134.
    5. Al-Ebbini, Lina & Oztekin, Asil & Chen, Yao, 2016. "FLAS: Fuzzy lung allocation system for US-based transplantations," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1051-1065.
    6. Guo, Peijun & Tanaka, Hideo, 2006. "Dual models for possibilistic regression analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 253-266, November.
    7. Antonio Terceño & María Glòria Barberà-Mariné & Yanina Laumann, 2018. "Análisis de los coeficientes beta: evidencia en el mercado de activos chileno," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 21(3), pages 076-093, December.
    8. Ramli, Azizul Azhar & Watada, Junzo & Pedrycz, Witold, 2011. "Real-time fuzzy regression analysis: A convex hull approach," European Journal of Operational Research, Elsevier, vol. 210(3), pages 606-617, May.
    9. Shafaei Bajestani, Narges & Vahidian Kamyad, Ali & Nasli Esfahani, Ensieh & Zare, Assef, 2018. "Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model," European Journal of Operational Research, Elsevier, vol. 264(3), pages 859-869.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Hsien-Chung, 2003. "Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 203-217, February.
    2. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    3. Azadeh, A. & Khakestani, M. & Saberi, M., 2009. "A flexible fuzzy regression algorithm for forecasting oil consumption estimation," Energy Policy, Elsevier, vol. 37(12), pages 5567-5579, December.
    4. Pavel Škrabánek & Jaroslav Marek & Alena Pozdílková, 2021. "Boscovich Fuzzy Regression Line," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    5. Azadeh, A. & Saberi, M. & Asadzadeh, S.M. & Khakestani, M., 2011. "A hybrid fuzzy mathematical programming-design of experiment framework for improvement of energy consumption estimation with small data sets and uncertainty: The cases of USA, Canada, Singapore, Pakis," Energy, Elsevier, vol. 36(12), pages 6981-6992.
    6. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
    7. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    8. Alfred Mbairadjim Moussa & Jules Sadefo Kamdem, 2022. "A fuzzy multifactor asset pricing model," Annals of Operations Research, Springer, vol. 313(2), pages 1221-1241, June.
    9. Pierpaolo D’Urso & Marta Disegna & Riccardo Massari, 2020. "Satisfaction and Tourism Expenditure Behaviour," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 1081-1106, June.
    10. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    11. F-M Tseng, 2008. "Quadratic interval innovation diffusion models for new product sales forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1120-1127, August.
    12. Carmen Nadia Ciocoiu & Adina Liliana Prioteasa & Sofia Elena Colesca, 2020. "Risk Management Implementation for Sustainable Development of Romanian SMEs: A Fuzzy Approach ...........," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(55), pages 726-726, August.
    13. Tseng, Fang-Mei & Lin, Lin, 2005. "A quadratic interval logit model for forecasting bankruptcy," Omega, Elsevier, vol. 33(1), pages 85-91, February.
    14. D'Urso, Pierpaolo & Gastaldi, Tommaso, 2000. "A least-squares approach to fuzzy linear regression analysis," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 427-440, October.
    15. Kim, Kwang-Jae & Moskowitz, Herbert & Dhingra, Anoop & Evans, Gerald, 2000. "Fuzzy multicriteria models for quality function deployment," European Journal of Operational Research, Elsevier, vol. 121(3), pages 504-518, March.
    16. Shafaei Bajestani, Narges & Vahidian Kamyad, Ali & Nasli Esfahani, Ensieh & Zare, Assef, 2018. "Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model," European Journal of Operational Research, Elsevier, vol. 264(3), pages 859-869.
    17. Pierpaolo D’Urso & Riccardo Massari, 2013. "Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 279-306, November.
    18. Antonio Terceño & María Glòria Barberà-Mariné & Yanina Laumann, 2018. "Análisis de los coeficientes beta: evidencia en el mercado de activos chileno," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 21(3), pages 076-093, December.
    19. Barros, C.P. & Emrouznejad, Ali, 2016. "Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banksAuthor-Name: Wanke, Peter," European Journal of Operational Research, Elsevier, vol. 249(1), pages 378-389.
    20. Zhou, Jian & Shen, Yixuan & Pantelous, Athanasios A. & Zhang, Hui, 2021. "The range of uncertainty on the property market pricing: The case of the city of Shanghai," Finance Research Letters, Elsevier, vol. 40(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:148:y:2003:i:2:p:426-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.