IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i2d10.1057_s41274-016-0024-3.html
   My bibliography  Save this article

A column generation approach for the route planning problem in fourth party logistics

Author

Listed:
  • Yi Tao

    (Guangdong University of Technology)

  • Ek Peng Chew

    (National University of Singapore)

  • Loo Hay Lee

    (National University of Singapore)

  • Yuran Shi

    (National University of Singapore)

Abstract

In this paper, we address the route planning problem in fourth party logistics (4PL). The problem calls for the selection of the logistics companies by a 4PL provider to optimize the routes of delivering goods through a transportation network. The concept of 4PL emerged in response to the shortfall in services capabilities of traditional third party logistics and has been proven to be capable of integrating logistics resources in order to fulfill complex transportation demands. A mixed-integer programming model is established for the planning problem with setup cost and edge cost discount policies which are commonly seen in practice. We propose a column generation approach combined with graph search heuristic to efficiently solve the problem. The good performance in terms of the solution quality and computational efficiency of our approach is shown through extensive numerical experiments on various scales of test instances. Impacts of cost policies on routing decision are also investigated and managerial insights are drawn.

Suggested Citation

  • Yi Tao & Ek Peng Chew & Loo Hay Lee & Yuran Shi, 2017. "A column generation approach for the route planning problem in fourth party logistics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 165-181, February.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:2:d:10.1057_s41274-016-0024-3
    DOI: 10.1057/s41274-016-0024-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-016-0024-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-016-0024-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.
    2. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    3. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    4. Huang, Min & Cui, Yan & Yang, Shengxiang & Wang, Xingwei, 2013. "Fourth party logistics routing problem with fuzzy duration time," International Journal of Production Economics, Elsevier, vol. 145(1), pages 107-116.
    5. Muter, İbrahim & İlker Birbil, Ş. & Bülbül, Kerem & Şahin, Güvenç, 2012. "A note on “A LP-based heuristic for a time-constrained routing problem”," European Journal of Operational Research, Elsevier, vol. 221(2), pages 306-307.
    6. Paraskevopoulos, Dimitris C. & Bektaş, Tolga & Crainic, Teodor Gabriel & Potts, Chris N., 2016. "A cycle-based evolutionary algorithm for the fixed-charge capacitated multi-commodity network design problem," European Journal of Operational Research, Elsevier, vol. 253(2), pages 265-279.
    7. Avella, Pasquale & D'Auria, Bernardo & Salerno, Saverio, 2006. "A LP-based heuristic for a time-constrained routing problem," European Journal of Operational Research, Elsevier, vol. 173(1), pages 120-124, August.
    8. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    9. S Kim, 2013. "A column generation heuristic for congested facility location problem with clearing functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1780-1789, December.
    10. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohu Qian & Min Huang & Qingyu Zhang & Mingqiang Yin & Xingwei Wang, 2018. "Mechanism design of incentive-based reverse auctions with loss-averse 3PLs under incomplete attributes," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-20, November.
    2. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muter, İbrahim & Sezer, Zeynep, 2018. "Algorithms for the one-dimensional two-stage cutting stock problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 20-32.
    2. Garijo, Delia & Márquez, Alberto & Rodríguez, Natalia & Silveira, Rodrigo I., 2019. "Computing optimal shortcuts for networks," European Journal of Operational Research, Elsevier, vol. 279(1), pages 26-37.
    3. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    4. Les Foulds & Daniel Duarte & Hugo Nascimento & Humberto Longo & Bryon Hall, 2014. "Turning restriction design in traffic networks with a budget constraint," Journal of Global Optimization, Springer, vol. 60(2), pages 351-371, October.
    5. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    6. Muter, İbrahim & Birbil, Ş. İlker & Bülbül, Kerem, 2018. "Benders decomposition and column-and-row generation for solving large-scale linear programs with column-dependent-rows," European Journal of Operational Research, Elsevier, vol. 264(1), pages 29-45.
    7. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    8. Amanda O. C. Ayres & Betania S. C. Campello & Washington A. Oliveira & Carla T. L. S. Ghidini, 2021. "A Bi-Integrated Model for coupling lot-sizing and cutting-stock problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1047-1076, December.
    9. Erjavec, J. & Gradisar, M. & Trkman, P., 2012. "Assessment of stock size to minimize cutting stock production costs," International Journal of Production Economics, Elsevier, vol. 135(1), pages 170-176.
    10. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    11. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    12. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    13. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    14. Milind Dawande & Jayant Kalagnanam & Ho Soo Lee & Chandra Reddy & Stuart Siegel & Mark Trumbo, 2004. "The Slab-Design Problem in the Steel Industry," Interfaces, INFORMS, vol. 34(3), pages 215-225, June.
    15. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2024. "Integer optimization models and algorithms for the multi-period non-shareable resource allocation problem," European Journal of Operational Research, Elsevier, vol. 317(1), pages 43-59.
    16. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    17. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    18. Guericke, Stefan & Tierney, Kevin, 2015. "Liner shipping cargo allocation with service levels and speed optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 40-60.
    19. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    20. Letchford, Adam N. & Amaral, Andre, 2001. "Analysis of upper bounds for the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 582-593, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:2:d:10.1057_s41274-016-0024-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.