IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v140y2002i1p37-49.html
   My bibliography  Save this article

The performance of stochastic dynamic and fixed mix portfolio models

Author

Listed:
  • Fleten, Stein-Erik
  • Hoyland, Kjetil
  • Wallace, Stein W.

Abstract

No abstract is available for this item.

Suggested Citation

  • Fleten, Stein-Erik & Hoyland, Kjetil & Wallace, Stein W., 2002. "The performance of stochastic dynamic and fixed mix portfolio models," European Journal of Operational Research, Elsevier, vol. 140(1), pages 37-49, July.
  • Handle: RePEc:eee:ejores:v:140:y:2002:i:1:p:37-49
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(01)00195-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    2. Philip M. Lurie & Matthew S. Goldberg, 1998. "An Approximate Method for Sampling Correlated Random Variables from Partially-Specified Distributions," Management Science, INFORMS, vol. 44(2), pages 203-218, February.
    3. David R. Cariño & David H. Myers & William T. Ziemba, 1998. "Concepts, Technical Issues, and Uses of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 450-462, August.
    4. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    5. Zenios, Stavros A. & Holmer, Martin R. & McKendall, Raymond & Vassiadou-Zeniou, Christiana, 1998. "Dynamic models for fixed-income portfolio management under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1517-1541, August.
    6. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    7. Hoyland, Kjetil & Wallace, Stein W., 2001. "Analyzing legal regulations in the Norwegian life insurance business using a multistage asset-liability management model," European Journal of Operational Research, Elsevier, vol. 134(2), pages 293-308, October.
    8. Vassiadou-Zeniou, Christiana & Zenios, Stavros A., 1996. "Robust optimization models for managing callable bond portfolios," European Journal of Operational Research, Elsevier, vol. 91(2), pages 264-273, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Pan & Yongpei Guan, 2022. "Integrated Stochastic Optimal Self-Scheduling for Two-Settlement Electricity Markets," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1819-1840, May.
    2. Laureano Escudero & Araceli Garín & María Merino & Gloria Pérez, 2009. "On multistage Stochastic Integer Programming for incorporating logical constraints in asset and liability management under uncertainty," Computational Management Science, Springer, vol. 6(3), pages 307-327, August.
    3. Chen, Liang & Kettunen, Janne, 2017. "Is certainty in carbon policy better than uncertainty?," European Journal of Operational Research, Elsevier, vol. 258(1), pages 230-243.
    4. Davari-Ardakani, Hamed & Aminnayeri, Majid & Seifi, Abbas, 2014. "A study on modeling the dynamics of statistically dependent returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 35-51.
    5. Fan, Wei, 2014. "Optimizing Strategic Allocation of Vehicles for One-Way Car-sharing Systems Under Demand Uncertainty," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(3).
    6. Liu, J. & Li, Y.P. & Huang, G.H. & Zeng, X.T., 2014. "A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 50-66.
    7. Yuichi Takano & Renata Sotirov, 2012. "A polynomial optimization approach to constant rebalanced portfolio selection," Computational Optimization and Applications, Springer, vol. 52(3), pages 645-666, July.
    8. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    9. Petri Hilli & Matti Koivu & Teemu Pennanen & Antero Ranne, 2007. "A stochastic programming model for asset liability management of a Finnish pension company," Annals of Operations Research, Springer, vol. 152(1), pages 115-139, July.
    10. Marida Bertocchi & Vittorio Moriggia & Jitka Dupačová, 2006. "Horizon and stages in applications of stochastic programming in finance," Annals of Operations Research, Springer, vol. 142(1), pages 63-78, February.
    11. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    12. William T. Ziemba, 2013. "Portfolio optimization: theory and practical implementation," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 2, pages 45-72, Edward Elgar Publishing.
    13. Ekblom, J. & Blomvall, J., 2020. "Importance sampling in stochastic optimization: An application to intertemporal portfolio choice," European Journal of Operational Research, Elsevier, vol. 285(1), pages 106-119.
    14. Fan, Wei & Machemehl, Randy, 2004. "A Multi-stage Monte Carlo Sampling Based Stochastic Programming Model for the Dynamic Vehicle Allocation Problem," 45th Annual Transportation Research Forum, Evanston, Illinois, March 21-23, 2004 208244, Transportation Research Forum.
    15. M. A. H. Dempster & E. A. Germano & M. Medova & M. I. Rietbergen & F. Sandrini & M. Scrowston & N. Zhang, 2007. "DC pension fund benchmarking with fixed-mix portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 365-370.
    16. Christopher Bayliss & Marti Serra & Armando Nieto & Angel A. Juan, 2020. "Combining a Matheuristic with Simulation for Risk Management of Stochastic Assets and Liabilities," Risks, MDPI, vol. 8(4), pages 1-14, December.
    17. Yuichi Takano & Jun-ya Gotoh, 2011. "Constant Rebalanced Portfolio Optimization Under Nonlinear Transaction Costs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(2), pages 191-211, May.
    18. Fan, Lin & Hobbs, Benjamin F. & Norman, Catherine S., 2010. "Risk aversion and CO2 regulatory uncertainty in power generation investment: Policy and modeling implications," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 193-208, November.
    19. Lee, Zu-Hsu & Deng, Shiming & Lin, Beixin & Yang, James G.S., 2010. "Decision model and analysis for investment interest expense deduction and allocation," European Journal of Operational Research, Elsevier, vol. 200(1), pages 268-280, January.
    20. Bae, Geum Il & Kim, Woo Chang & Mulvey, John M., 2014. "Dynamic asset allocation for varied financial markets under regime switching framework," European Journal of Operational Research, Elsevier, vol. 234(2), pages 450-458.
    21. Lioui, Abraham & Poncet, Patrice, 2013. "Optimal benchmarking for active portfolio managers," European Journal of Operational Research, Elsevier, vol. 226(2), pages 268-276.
    22. Bianchi, Daniele & Guidolin, Massimo, 2014. "Can long-run dynamic optimal strategies outperform fixed-mix portfolios? Evidence from multiple data sets," European Journal of Operational Research, Elsevier, vol. 236(1), pages 160-176.
    23. Alois Geyer & William T. Ziemba, 2008. "The Innovest Austrian Pension Fund Financial Planning Model InnoALM," Operations Research, INFORMS, vol. 56(4), pages 797-810, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
    2. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    3. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    4. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    5. Dupacova, Jitka, 2002. "Applications of stochastic programming: Achievements and questions," European Journal of Operational Research, Elsevier, vol. 140(2), pages 281-290, July.
    6. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    7. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    8. Osorio, Maria A. & Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Post-tax optimization with stochastic programming," European Journal of Operational Research, Elsevier, vol. 157(1), pages 152-168, August.
    9. Blomvall, Jorgen & Lindberg, Per Olov, 2003. "Back-testing the performance of an actively managed option portfolio at the Swedish Stock Market, 1990-1999," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1099-1112, April.
    10. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    11. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    12. Mitra, Sovan & Lim, Sungmook & Karathanasopoulos, Andreas, 2019. "Regression based scenario generation: Applications for performance management," Operations Research Perspectives, Elsevier, vol. 6(C).
    13. Christopher Bayliss & Marti Serra & Armando Nieto & Angel A. Juan, 2020. "Combining a Matheuristic with Simulation for Risk Management of Stochastic Assets and Liabilities," Risks, MDPI, vol. 8(4), pages 1-14, December.
    14. Fan, Wei, 2014. "Optimizing Strategic Allocation of Vehicles for One-Way Car-sharing Systems Under Demand Uncertainty," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(3).
    15. Caio Mário Mesquita & Cristiano Arbex Valle & Adriano César Machado Pereira, 2024. "Scenario Generation for Financial Data with a Machine Learning Approach Based on Realized Volatility and Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1879-1919, May.
    16. Fan, Wei & Machemehl, Randy, 2004. "A Multi-stage Monte Carlo Sampling Based Stochastic Programming Model for the Dynamic Vehicle Allocation Problem," 45th Annual Transportation Research Forum, Evanston, Illinois, March 21-23, 2004 208244, Transportation Research Forum.
    17. Alois Geyer & William T. Ziemba, 2008. "The Innovest Austrian Pension Fund Financial Planning Model InnoALM," Operations Research, INFORMS, vol. 56(4), pages 797-810, August.
    18. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    19. Blomvall, Jörgen & Hagenbjörk, Johan, 2022. "Reducing transaction costs for interest rate risk hedging with stochastic programming," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1282-1293.
    20. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:140:y:2002:i:1:p:37-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.