IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v131y2001i2p262-272.html
   My bibliography  Save this article

Simulation of stochastic elements in railway systems using self-learning processes

Author

Listed:
  • Malavasi, Gabriele
  • Ricci, Stefano

Abstract

No abstract is available for this item.

Suggested Citation

  • Malavasi, Gabriele & Ricci, Stefano, 2001. "Simulation of stochastic elements in railway systems using self-learning processes," European Journal of Operational Research, Elsevier, vol. 131(2), pages 262-272, June.
  • Handle: RePEc:eee:ejores:v:131:y:2001:i:2:p:262-272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00126-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masson, Egill & Wang, Yih-Jeou, 1990. "Introduction to computation and learning in artificial neural networks," European Journal of Operational Research, Elsevier, vol. 47(1), pages 1-28, July.
    2. Yang, Hai & Kitamura, Ryuichi & Jovanis, Paul P. & Vaughn, Kenneth M. & Abdel-aty, Mohammed A. & Reddy, Prasuna Dvg, 1993. "Exploration Of Driver Route Choice With Advanced Traveler Information Using Neural Network Concepts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt53d2t6df, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Wen & Weiwei Mou & Ping Huang & Zhongcan Li, 2020. "A predictive model of train delays on a railway line," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 470-488, April.
    2. Huang, Ping & Wen, Chao & Fu, Liping & Lessan, Javad & Jiang, Chaozhe & Peng, Qiyuan & Xu, Xinyue, 2020. "Modeling train operation as sequences: A study of delay prediction with operation and weather data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nijkamp, Peter & Reggiani, Aura & Tsang, Wai Fai, 2004. "Comparative modelling of interregional transport flows: Applications to multimodal European freight transport," European Journal of Operational Research, Elsevier, vol. 155(3), pages 584-602, June.
    2. Hai Yang, 1999. "Evaluating the benefits of a combined route guidance and road pricing system in a traffic network with recurrent congestion," Transportation, Springer, vol. 26(3), pages 299-322, August.
    3. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
    4. Zheng Zhu & Xiqun Chen & Chenfeng Xiong & Lei Zhang, 2018. "A mixed Bayesian network for two-dimensional decision modeling of departure time and mode choice," Transportation, Springer, vol. 45(5), pages 1499-1522, September.
    5. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    6. Chen, Ting-Yu & Chang, Hsin-Li & Tzeng, Gwo-Hshiung, 2001. "Using a weight-assessing model to identify route choice criteria and information effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(3), pages 197-224, March.
    7. Klein, B. D. & Rossin, D. F., 1999. "Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy," Omega, Elsevier, vol. 27(5), pages 569-582, October.
    8. Chen, S. K. & Mangiameli, P. & West, D., 1995. "The comparative ability of self-organizing neural networks to define cluster structure," Omega, Elsevier, vol. 23(3), pages 271-279, June.
    9. Balakrishnan, Nagraj & Chakravarty, Amiya K. & Ghose, Sanjoy, 1997. "Role of design-philosophies in interfacing manufacturing with marketing," European Journal of Operational Research, Elsevier, vol. 103(3), pages 453-469, December.
    10. Reis dos Santos, M. Isabel & Porta Nova, Acacio M.O., 2006. "Statistical fitting and validation of non-linear simulation metamodels: A case study," European Journal of Operational Research, Elsevier, vol. 171(1), pages 53-63, May.
    11. Li, Hongtao & Bai, Juncheng & Li, Yongwu, 2019. "A novel secondary decomposition learning paradigm with kernel extreme learning machine for multi-step forecasting of container throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Yang, Hai & Meng, Qiang, 2001. "Modeling user adoption of advanced traveler information systems: dynamic evolution and stationary equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 895-912, December.
    13. Richard H. M. Emmerink & Paul van Beek, 1997. "Empirical Analysis of Work Schedule Flexibility: Implications for Road Pricing and Driver Information Systems," Urban Studies, Urban Studies Journal Limited, vol. 34(2), pages 217-234, February.
    14. Emmerink, Richard H. M. & Verhoef, Erik T. & Nijkamp, Peter & Rietveld, Piet, 1998. "Information policy in road transport with elastic demand: Some welfare economic considerations," European Economic Review, Elsevier, vol. 42(1), pages 71-95, January.
    15. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    16. Sexton, Randall S. & McMurtrey, Shannon & Cleavenger, Dean, 2006. "Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1009-1018, February.
    17. Shouhong Wang, 2001. "Cluster analysis using a validated self‐organizing method: cases of problem identification," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(2), pages 127-138, June.
    18. Vukadinovic, Katarina & Teodorovic, Dusan & Pavkovic, Goran, 1997. "A neural network approach to the vessel dispatching problem," European Journal of Operational Research, Elsevier, vol. 102(3), pages 473-487, November.
    19. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    20. Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:131:y:2001:i:2:p:262-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.