IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v127y2000i3p546-564.html
   My bibliography  Save this article

Scheduling two machines that require multiple types of maintenance, for a single operation

Author

Listed:
  • Rabinowitz, Gadi
  • Goren, Shai
  • Mehrez, Abraham

Abstract

No abstract is available for this item.

Suggested Citation

  • Rabinowitz, Gadi & Goren, Shai & Mehrez, Abraham, 2000. "Scheduling two machines that require multiple types of maintenance, for a single operation," European Journal of Operational Research, Elsevier, vol. 127(3), pages 546-564, December.
  • Handle: RePEc:eee:ejores:v:127:y:2000:i:3:p:546-564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(99)00338-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunsucker, J. L. & Shah, J. R., 1994. "Comparative performance analysis of priority rules in a constrained flow shop with multiple processors environment," European Journal of Operational Research, Elsevier, vol. 72(1), pages 102-114, January.
    2. Joseph Kreimer & Abraham Mehrez, 1994. "Optimal Real-Time Data Acquisition and Processing by a Multiserver Stand-by System," Operations Research, INFORMS, vol. 42(1), pages 24-30, February.
    3. Kralj, Branimir L. & Petrovic, Radivoj, 1988. "Optimal preventive maintenance scheduling of thermal generating units in power systems --A survey of problem formulations and solution methods," European Journal of Operational Research, Elsevier, vol. 35(1), pages 1-15, April.
    4. Kreimer, Joseph & Mehrez, Abraham, 1993. "An optimal operation policy for real-time n-server stand-by systems involving preventive maintenance," European Journal of Operational Research, Elsevier, vol. 69(1), pages 50-54, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward Ianovsky & Joseph Kreimer, 2011. "An optimal routing policy for unmanned aerial vehicles (analytical and cross-entropy simulation approach)," Annals of Operations Research, Springer, vol. 189(1), pages 215-253, September.
    2. Ianovsky, Edward & Kreimer, Joseph, 2003. "Optimization of real-time multiserver system with two different channels and shortage of maintenance facilities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(6), pages 615-627.
    3. Kreimer, Joseph, 2000. "Real-time multiserver system with two non-identical channels and limited maintenance facilities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(1), pages 85-94.
    4. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    5. Li, Shanling, 1997. "A hybrid two-stage flowshop with part family, batch production, major and minor set-ups," European Journal of Operational Research, Elsevier, vol. 102(1), pages 142-156, October.
    6. Dahal, Keshav & Al-Arfaj, Khalid & Paudyal, Krishna, 2015. "Modelling generator maintenance scheduling costs in deregulated power markets," European Journal of Operational Research, Elsevier, vol. 240(2), pages 551-561.
    7. Santos, D. L. & Hunsucker, J. L. & Deal, D. E., 1995. "Global lower bounds for flow shops with multiple processors," European Journal of Operational Research, Elsevier, vol. 80(1), pages 112-120, January.
    8. Mazidi, Peyman & Tohidi, Yaser & Ramos, Andres & Sanz-Bobi, Miguel A., 2018. "Profit-maximization generation maintenance scheduling through bi-level programming," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1045-1057.
    9. Bollapragada, Srinivas & Gupta, Aparna & Lawsirirat, Chaipat, 2007. "Managing a portfolio of long term service agreements," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1399-1411, November.
    10. Kralj, Branimir & Petrovic, Radivoj, 1995. "A multiobjective optimization approach to thermal generating units maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 84(2), pages 481-493, July.
    11. Cholette, Michael E. & Yu, Hongyang & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2019. "Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 184-196.
    12. Budai-Balke, G. & Dekker, R. & Nicolai, R.P., 2006. "A review of planning models for maintenance and production," Econometric Institute Research Papers EI 2006-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Brah, Shaukat A. & Loo, Luan Luan, 1999. "Heuristics for scheduling in a flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 113(1), pages 113-122, February.
    14. Grigoriev, Alexander & van de Klundert, Joris & Spieksma, Frits C.R., 2006. "Modeling and solving the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 783-797, August.
    15. Sarper, H. & Henry, M. C., 1996. "Combinatorial evaluation of six dispatching rules in a dynamic two-machine flow shop," Omega, Elsevier, vol. 24(1), pages 73-81, February.
    16. G Budai & D Huisman & R Dekker, 2006. "Scheduling preventive railway maintenance activities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1035-1044, September.
    17. Rokhforoz, Pegah & Gjorgiev, Blazhe & Sansavini, Giovanni & Fink, Olga, 2021. "Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    19. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1998. "The flow shop with parallel machines: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 226-253, April.
    20. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2008. "Cooperative dispatching for minimizing mean flowtime in a dynamic flowshop," International Journal of Production Economics, Elsevier, vol. 113(2), pages 819-833, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:127:y:2000:i:3:p:546-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.