IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v28y2018icp82-96.html
   My bibliography  Save this article

A choice model for mixed decision variables

Author

Listed:
  • Lee, Sanghak
  • Kim, Hyowon
  • Kim, Jaehwan
  • Allenby, Greg M.

Abstract

Consumers increasingly face decisions among discrete and continuous choice alternatives. Deciding what to wear, watch, read and drive often includes alternatives that allow access for a period of time, as opposed to outright ownership of a good. Consumers may also want both, where access provides a wider variety of offerings than possible with ownership, and ownership provides greater assurance of availability. We propose a mixed discrete/continuous utility model for assessing the economic relationship between mixed decision variables. In application to two studies involving on-line music and videos, we find that commonly used models of choice mischaracterize the economic relationship between access and ownership. We explore the degree to which profit maximizing prices are dependent on correctly assessing whether access through subscription services are substitutes or complements to product ownership.

Suggested Citation

  • Lee, Sanghak & Kim, Hyowon & Kim, Jaehwan & Allenby, Greg M., 2018. "A choice model for mixed decision variables," Journal of choice modelling, Elsevier, vol. 28(C), pages 82-96.
  • Handle: RePEc:eee:eejocm:v:28:y:2018:i:c:p:82-96
    DOI: 10.1016/j.jocm.2018.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534517301252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2018.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-561, May.
    2. Chandukala, Sandeep R. & Kim, Jaehwan & Otter, Thomas & Rossi, Peter E. & Allenby, Greg M., 2008. "Choice Models in Marketing: Economic Assumptions, Challenges and Trends," Foundations and Trends(R) in Marketing, now publishers, vol. 2(2), pages 97-184, September.
    3. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    4. Anita Rao, 2015. "Online Content Pricing: Purchase and Rental Markets," Marketing Science, INFORMS, vol. 34(3), pages 430-451, May.
    5. Knox, George & Eliashberg, Jehoshua, 2009. "The consumer's rent vs. buy decision in the rentailer," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 125-135.
    6. Sanghak Lee & Greg M. Allenby, 2014. "Modeling Indivisible Demand," Marketing Science, INFORMS, vol. 33(3), pages 364-381, May.
    7. P. K. Kannan & Barbara Kline Pope & Sanjay Jain, 2009. "—Pricing Digital Content Product Lines: A Model and Application for the National Academies Press," Marketing Science, INFORMS, vol. 28(4), pages 620-636, 07-08.
    8. Takuya Satomura & Jaehwan Kim & Greg M. Allenby, 2011. "Multiple-Constraint Choice Models with Corner and Interior Solutions," Marketing Science, INFORMS, vol. 30(3), pages 481-490, 05-06.
    9. Sanghak Lee & Jaehwan Kim & Greg M. Allenby, 2013. "A Direct Utility Model for Asymmetric Complements," Marketing Science, INFORMS, vol. 32(3), pages 454-470, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Chul & Smith, Adam N. & Kim, Jaehwan & Allenby, Greg M., 2023. "Outside good utility and substitution patterns in direct utility models," Journal of choice modelling, Elsevier, vol. 49(C).
    2. Sanghak Lee & Greg M. Allenby, 2014. "Modeling Indivisible Demand," Marketing Science, INFORMS, vol. 33(3), pages 364-381, May.
    3. Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
    4. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    5. John R. Howell & Sanghak Lee & Greg M. Allenby, 2016. "Price Promotions in Choice Models," Marketing Science, INFORMS, vol. 35(2), pages 319-334, March.
    6. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
    7. Allenby, Greg M., 2017. "Structural forecasts for marketing data," International Journal of Forecasting, Elsevier, vol. 33(2), pages 433-441.
    8. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    9. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    10. Ludovic Stourm & Raghuram Iyengar & Eric T. Bradlow, 2020. "A Flexible Demand Model for Complements Using Household Production Theory," Marketing Science, INFORMS, vol. 39(4), pages 763-787, July.
    11. Kim, Youngju & Hardt, Nino & Kim, Jaehwan & Allenby, Greg M., 2022. "Conjunctive screening in models of multiple discreteness," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 1209-1234.
    12. Sanghak Lee & Sunghoon Kim & Sungho Park, 2022. "A sequential choice model for multiple discrete demand," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 141-178, June.
    13. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    14. Don Fullerton & Li Gan & Miwa Hattori, 2015. "A model to evaluate vehicle emission incentive policies in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 79-108, January.
    15. Frontuto Vito, 2012. "Residential Energy Demand: a Multiple Discrete-Continuous Extreme Value Model using Italian Expenditure Data," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201203, University of Turin.
    16. Kidokoro, Yukihiro, 2016. "A micro foundation for discrete choice models with multiple categories of goods," Journal of choice modelling, Elsevier, vol. 19(C), pages 54-72.
    17. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    18. Richards, Timothy J. & Gómez, Miguel I. & Pofahl, Geoffrey, 2012. "A Multiple-discrete/Continuous Model of Price Promotion," Journal of Retailing, Elsevier, vol. 88(2), pages 206-225.
    19. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    20. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:28:y:2018:i:c:p:82-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.