IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v21y2016icp56-59.html
   My bibliography  Save this article

A Bayes multinomial probit model for random consumer-surplus maximization

Author

Listed:
  • Chiew, Esther
  • Daziano, Ricardo A.

Abstract

Willingness to pay measures derived from discrete choice model not only have a clear economic interpretation, but also are a relevant input for welfare analysis, developing marketing strategies, and policy-making. Because inference on parameter ratios is associated with statistical issues, transforming the original utility maximization problem into a consumer surplus maximization model that provides direct inference on willingness to pay is thus desirable. Recent literature uses a parameter reparameterization from the original preference space to the desired willingness-to-pay space. However, we propose a slight variation to this reparameterization that is based on normalizing the marginal utility of income and that works particularly well for models with a general covariance matrix. (For logit-based models the normalization is equivalent to working with the standard reparameterization in willingness-to-pay space.) In fact, we show that Bayes implementation of the normalization of the marginal utility of income solves well-known problems of current multinomial probit samplers. The estimator that we propose effectively avoids defining proper priors on unidentified parameters as well as identification of priors for and making draws of a constrained covariance matrix, and improves the behavior of the predictive posterior of the choice probabilities. In addition, willingness-to-pay estimates from previous studies can easily be used as proper priors in the proposed Gibbs sampler.

Suggested Citation

  • Chiew, Esther & Daziano, Ricardo A., 2016. "A Bayes multinomial probit model for random consumer-surplus maximization," Journal of choice modelling, Elsevier, vol. 21(C), pages 56-59.
  • Handle: RePEc:eee:eejocm:v:21:y:2016:i:c:p:56-59
    DOI: 10.1016/j.jocm.2015.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534515300257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2015.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    2. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    3. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    4. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    5. Kamel Jedidi & Sharan Jagpal & Puneet Manchanda, 2003. "Measuring Heterogeneous Reservation Prices for Product Bundles," Marketing Science, INFORMS, vol. 22(1), pages 107-130, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    2. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    3. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    4. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    5. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    6. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    7. Ruben Loaiza-Maya & Didier Nibbering, 2020. "Scalable Bayesian estimation in the multinomial probit model," Papers 2007.13247, arXiv.org, revised Mar 2021.
    8. Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
    9. Park, Sang Soo & Lee, Chung-Ki, 2011. "베이지안 추정법을 이용한 주택선택의 다항프로빗 모형 분석 [Analysis of housing choice using multinomial probit model – Bayesian estimation]," MPRA Paper 37150, University Library of Munich, Germany.
    10. Lamoureux, Christopher G. & Nejadmalayeri, Ali, 2015. "Costs of capital and public issuance choice," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 27-45.
    11. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
    12. Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
    13. Veettil, Prakashan Chellattan & Speelman, Stijn & Frija, Aymen & Buysse, Jeroen & van Huylenbroeck, Guido, 2011. "Complementarity between water pricing, water rights and local water governance: A Bayesian analysis of choice behaviour of farmers in the Krishna river basin, India," Ecological Economics, Elsevier, vol. 70(10), pages 1756-1766, August.
    14. Sumeetpal S. Singh & Nicolas Chopin & Nick Whiteley, 2010. "Bayesian Learning of Noisy Markov Decision Processes," Working Papers 2010-36, Center for Research in Economics and Statistics.
    15. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    16. Dennis Fok & Richard Paap & Philip Hans Franses, 2014. "Incorporating Responsiveness to Marketing Efforts in Brand Choice Modeling," Econometrics, MDPI, vol. 2(1), pages 1-25, February.
    17. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    18. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
    19. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    20. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.

    More about this item

    Keywords

    Discrete choice models; Willingness-to-pay space; Consumer surplus models;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:21:y:2016:i:c:p:56-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.