IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v115y2013icp16-32.html
   My bibliography  Save this article

Nonparametric tests for change-point detection à la Gombay and Horváth

Author

Listed:
  • Holmes, Mark
  • Kojadinovic, Ivan
  • Quessy, Jean-François

Abstract

The nonparametric test for change-point detection proposed by Gombay and Horváth is revisited and extended in the broader setting of empirical process theory. The resulting testing procedure for potentially multivariate observations is based on a sequential generalization of the functional multiplier central limit theorem and on modifications of Gombay and Horváth’s seminal approach that appears to improve the finite-sample behavior of the tests. A large number of candidate test statistics based on processes indexed by lower-left orthants and half-spaces are considered and their performance is studied through extensive Monte Carlo experiments involving univariate, bivariate and trivariate data sets. Finally, practical recommendations are provided and the tests are illustrated on trivariate hydrological data.

Suggested Citation

  • Holmes, Mark & Kojadinovic, Ivan & Quessy, Jean-François, 2013. "Nonparametric tests for change-point detection à la Gombay and Horváth," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 16-32.
  • Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:16-32
    DOI: 10.1016/j.jmva.2012.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12002278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inoue, Atsushi, 2001. "Testing For Distributional Change In Time Series," Econometric Theory, Cambridge University Press, vol. 17(1), pages 156-187, February.
    2. Atsushi Inoue, "undated". "Testing Change in Time Series," Computing in Economics and Finance 1997 7, Society for Computational Economics.
    3. Antoch, Jaromír & Husková, Marie, 2001. "Permutation tests in change point analysis," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 37-46, May.
    4. Horváth, Lajos & Shao, Qi-Man, 2007. "Limit theorems for permutations of empirical processes with applications to change point analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1870-1888, December.
    5. Dietmar Ferger, 1994. "On the power of nonparametric changepoint-tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 41(1), pages 277-292, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Messer, 2022. "Bivariate change point detection: Joint detection of changes in expectation and variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 886-916, June.
    2. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    3. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    4. Nasri, Bouchra R. & Rémillard, Bruno N. & Bouezmarni, Taoufik, 2019. "Semi-parametric copula-based models under non-stationarity," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 347-365.
    5. Henry Penikas, 2016. "Copula-Based Univariate Time Series Structural Shift Identification Test," Papers 1609.05056, arXiv.org.
    6. Rohmer, Tom, 2016. "Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 45-54.
    7. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    8. Emura, Takeshi & Lai, Ching-Chieh & Sun, Li-Hsien, 2023. "Change point estimation under a copula-based Markov chain model for binomial time series," Econometrics and Statistics, Elsevier, vol. 28(C), pages 120-137.
    9. Bucher, Axel & Kojadinovic, Ivan, 2013. "A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing," LIDAM Discussion Papers ISBA 2013029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Nasri, Bouchra R. & Rémillard, Bruno N. & Bahraoui, Tarik, 2022. "Change-point problems for multivariate time series using pseudo-observations," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    11. Fabrizio Durante & Enrico Foscolo & Alex Weissensteiner, 2017. "Dependence between Stock Returns of Italian Banks and the Sovereign Risk," Econometrics, MDPI, vol. 5(2), pages 1-14, June.
    12. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    13. Rongrong Li & Lihua Xiong & Cong Jiang & Wenbin Li & Chengkai Liu, 2023. "Quantifying multivariate flood risk under nonstationary condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1161-1187, March.
    14. Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2013. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Discussion Papers ISBA 2013051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    2. Natalie Neumeyer & Ingrid Van Keilegom, 2009. "Change‐Point Tests for the Error Distribution in Non‐parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 518-541, September.
    3. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    4. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    5. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    6. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    7. Dominik Wied & Matthias Arnold & Nicolai Bissantz & Daniel Ziggel, 2012. "A new fluctuation test for constant variances with applications to finance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1111-1127, November.
    8. Rossi, Barbara & Sekhposyan, Tatevik, 2013. "Conditional predictive density evaluation in the presence of instabilities," Journal of Econometrics, Elsevier, vol. 177(2), pages 199-212.
    9. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    10. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    11. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    12. Chen, Bin & Hong, Yongmiao, 2012. "Testing For The Markov Property In Time Series," Econometric Theory, Cambridge University Press, vol. 28(1), pages 130-178, February.
    13. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    14. Su, Liangjun & Xiao, Zhijie, 2008. "Testing for parameter stability in quantile regression models," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2768-2775, November.
    15. Valentina Corradi & Norman R. Swanson, 2007. "Nonparametric Bootstrap Procedures For Predictive Inference Based On Recursive Estimation Schemes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 67-109, February.
    16. Elena Andreou, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 290-318.
    17. Fabio Busetti, 2012. "On detecting end-of-sample instabilities," Temi di discussione (Economic working papers) 881, Bank of Italy, Economic Research and International Relations Area.
    18. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    19. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    20. Wied, Dominik & Dehling, Herold & van Kampen, Maarten & Vogel, Daniel, 2014. "A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 723-736.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:16-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.