Semi-Supervised Learning of Classifiers from a Statistical Perspective: A Brief Review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecosta.2022.03.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
- Fabrizia Mealli & Donald B. Rubin, 2015. "Clarifying missing at random and related definitions, and implications when coupled with exchangeability," Biometrika, Biometrika Trust, vol. 102(4), pages 995-1000.
- Ofer Harel & Joseph L. Schafer, 2009. "Partial and latent ignorability in missing-data problems," Biometrika, Biometrika Trust, vol. 96(1), pages 37-50.
- Michael P. B. Gallaugher & Paul D. McNicholas, 2019. "On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 232-265, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
- Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
- Vernon T. Farewell & Li Su & Christopher Jackson, 2019. "Partially hidden multi-state modelling of a prolonged disease state defined by a composite outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 696-711, October.
- Paula M. Murray & Ryan P. Browne & Paul D. McNicholas, 2020. "Mixtures of Hidden Truncation Hyperbolic Factor Analyzers," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 366-379, July.
- Fei Wang & Yuhao Deng, 2023. "Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
- Robitzsch, Alexander, 2020. "About Still Nonignorable Consequences of (Partially) Ignoring Missing Item Responses in Large-scale Assessment," OSF Preprints hmy45, Center for Open Science.
- Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
- Chenguang Wang & Michael J. Daniels, 2011. "A Note on MAR, Identifying Restrictions, Model Comparison, and Sensitivity Analysis in Pattern Mixture Models with and without Covariates for Incomplete Data," Biometrics, The International Biometric Society, vol. 67(3), pages 810-818, September.
- A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
- Marco Doretti & Sara Geneletti & Elena Stanghellini, 2018.
"Missing Data: A Unified Taxonomy Guided by Conditional Independence,"
International Statistical Review, International Statistical Institute, vol. 86(2), pages 189-204, August.
- Doretti, Marco & Geneletti, Sara & Stanghellini, Elena, 2018. "Missing data: a unified taxonomy guided by conditional independence," LSE Research Online Documents on Economics 87227, London School of Economics and Political Science, LSE Library.
- Douglas L. Steinley, 2019. "Editorial: Journal of Classification Vol. 36–2," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 175-176, July.
- Morris, Katherine & McNicholas, Paul D., 2016. "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 133-150.
- Florian M. Hollenbach & Iavor Bojinov & Shahryar Minhas & Nils W. Metternich & Michael D. Ward & Alexander Volfovsky, 2021. "Multiple Imputation Using Gaussian Copulas," Sociological Methods & Research, , vol. 50(3), pages 1259-1283, August.
- Aidan G. O’Keeffe & Daniel M. Farewell & Brian D. M. Tom & Vernon T. Farewell, 2016. "Multiple Imputation of Missing Composite Outcomes in Longitudinal Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 310-332, October.
- D. M. Farewell & C. Huang & V. Didelez, 2017. "Ignorability for general longitudinal data," Biometrika, Biometrika Trust, vol. 104(2), pages 317-326.
- Hossein Baloochian & Hamid Reza Ghaffary, 2019. "Multiclass Classification Based on Multi-criteria Decision-making," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 140-151, April.
- Wei, Yuhong & Tang, Yang & McNicholas, Paul D., 2019. "Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 18-41.
- Cristina Tortora & Brian C. Franczak & Ryan P. Browne & Paul D. McNicholas, 2019. "A Mixture of Coalesced Generalized Hyperbolic Distributions," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 26-57, April.
- Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
- Michael P. B. Gallaugher & Paul D. McNicholas, 2019. "On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 232-265, July.
More about this item
Keywords
Semi-supervised learning; Missing-data mechanism; Relative efficiency of classifiers;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:26:y:2023:i:c:p:124-138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.