IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i7d10.1007_s00180-023-01447-0.html
   My bibliography  Save this article

Analysis of estimating the Bayes rule for Gaussian mixture models with a specified missing-data mechanism

Author

Listed:
  • Ziyang Lyu

    (University of New South Wales)

Abstract

Semi-supervised learning approaches have been successfully applied in a wide range of engineering and scientific fields. This paper investigates the generative model framework with a missingness mechanism for unclassified observations, as introduced by Ahfock and McLachlan (Stat Comput 30:1–12, 2020). We show that in a partially classified sample, a classifier using Bayes’ rule of allocation with a missing-data mechanism can surpass a fully supervised classifier in a two-class normal homoscedastic model, especially with moderate to low overlap and proportion of missing class labels, or with large overlap but few missing labels. It also outperforms a classifier with no missing-data mechanism regardless of the overlap region or the proportion of missing class labels. Our exploration of two- and three-component normal mixture models with unequal covariances through simulations further corroborates our findings. Finally, we illustrate the use of the proposed classifier with a missing-data mechanism on interneuronal and skin lesion datasets.

Suggested Citation

  • Ziyang Lyu, 2024. "Analysis of estimating the Bayes rule for Gaussian mixture models with a specified missing-data mechanism," Computational Statistics, Springer, vol. 39(7), pages 3727-3751, December.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:7:d:10.1007_s00180-023-01447-0
    DOI: 10.1007/s00180-023-01447-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01447-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01447-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabrizia Mealli & Donald B. Rubin, 2015. "Clarifying missing at random and related definitions, and implications when coupled with exchangeability," Biometrika, Biometrika Trust, vol. 102(4), pages 995-1000.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Doretti & Sara Geneletti & Elena Stanghellini, 2018. "Missing Data: A Unified Taxonomy Guided by Conditional Independence," International Statistical Review, International Statistical Institute, vol. 86(2), pages 189-204, August.
    2. Florian M. Hollenbach & Iavor Bojinov & Shahryar Minhas & Nils W. Metternich & Michael D. Ward & Alexander Volfovsky, 2021. "Multiple Imputation Using Gaussian Copulas," Sociological Methods & Research, , vol. 50(3), pages 1259-1283, August.
    3. Aidan G. O’Keeffe & Daniel M. Farewell & Brian D. M. Tom & Vernon T. Farewell, 2016. "Multiple Imputation of Missing Composite Outcomes in Longitudinal Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 310-332, October.
    4. Ahfock, Daniel & McLachlan, Geoffrey J., 2023. "Semi-Supervised Learning of Classifiers from a Statistical Perspective: A Brief Review," Econometrics and Statistics, Elsevier, vol. 26(C), pages 124-138.
    5. Sophia Rabe-Hesketh & Anders Skrondal, 2023. "Ignoring Non-ignorable Missingness," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 31-50, March.
    6. Fei Wang & Yuhao Deng, 2023. "Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    7. D. M. Farewell & C. Huang & V. Didelez, 2017. "Ignorability for general longitudinal data," Biometrika, Biometrika Trust, vol. 104(2), pages 317-326.
    8. Haiyan Yu & Bing Han & Nicholas Rios & Jianbin Chen, 2024. "Missing Data Imputation in Balanced Construction for Incomplete Block Designs," Mathematics, MDPI, vol. 12(21), pages 1-22, October.
    9. Ali, Saif & Arora, Gaurav, 2021. "Well-level Missingness Mechanisms in Administrative Groundwater Monitoring Data for Uttar Pradesh (UP), India, 2009-2018," 2021 Annual Meeting, August 1-3, Austin, Texas 314038, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:7:d:10.1007_s00180-023-01447-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.