IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v24y2022icp116-132.html
   My bibliography  Save this article

Bias-corrected method of moments estimators for dynamic panel data models

Author

Listed:
  • Breitung, Jörg
  • Kripfganz, Sebastian
  • Hayakawa, Kazuhiko

Abstract

A computationally simple bias correction for linear dynamic panel data models is proposed and its asymptotic properties are studied when the number of time periods is fixed or tends to infinity with the number of panel units. The approach can accommodate both fixed-effects and random-effects assumptions, heteroskedastic errors, as well as higher-order autoregressive models. Panel-corrected standard errors are proposed that allow for robust inference in dynamic models with cross-sectionally correlated errors. Monte Carlo experiments suggest that under the assumption of strictly exogenous regressors the bias-corrected method of moment estimator outperforms popular GMM estimators in terms of efficiency and correctly sized tests.

Suggested Citation

  • Breitung, Jörg & Kripfganz, Sebastian & Hayakawa, Kazuhiko, 2022. "Bias-corrected method of moments estimators for dynamic panel data models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 116-132.
  • Handle: RePEc:eee:ecosta:v:24:y:2022:i:c:p:116-132
    DOI: 10.1016/j.ecosta.2021.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306221000770
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai, 2013. "Fixed‐Effects Dynamic Panel Models, a Factor Analytical Method," Econometrica, Econometric Society, vol. 81(1), pages 285-314, January.
    2. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    3. Maurice J.G. Bun & Martin A. Carree & Artūras Juodis, 2017. "On Maximum Likelihood Estimation of Dynamic Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 463-494, August.
    4. Bun, Maurice J.G. & Carree, Martin A., 2005. "Bias-Corrected Estimation in Dynamic Panel Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 200-210, April.
    5. Mayer, Alexander, 2020. "(Consistently) testing strict exogeneity against the alternative of predeterminedness in linear time-series models," Economics Letters, Elsevier, vol. 193(C).
    6. Phillips, Peter C.B. & Sul, Donggyu, 2007. "Bias in dynamic panel estimation with fixed effects, incidental trends and cross section dependence," Journal of Econometrics, Elsevier, vol. 137(1), pages 162-188, March.
    7. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    8. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    9. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    10. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    11. Gerdie Everaert & Tom De Groote, 2016. "Common Correlated Effects Estimation of Dynamic Panels with Cross-Sectional Dependence," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 428-463, March.
    12. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    13. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    14. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    15. Ignace De Vos & Gerdie Everaert, 2021. "Bias-Corrected Common Correlated Effects Pooled Estimation in Dynamic Panels," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 294-306, January.
    16. Kruiniger, Hugo, 2018. "A further look at Modified ML estimation of the panel AR(1) model with fixed effects and arbitrary initial conditions," MPRA Paper 88623, University Library of Munich, Germany.
    17. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    18. Artūras Juodis, 2018. "First difference transformation in panel VAR models: Robustness, estimation, and inference," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 650-693, July.
    19. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    20. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, vol. 5(1), pages 1-54, March.
    21. Juodis, Artūras, 2013. "A note on bias-corrected estimation in dynamic panel data models," Economics Letters, Elsevier, vol. 118(3), pages 435-438.
    22. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    23. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    24. Su, Liangjun & Zhang, Yonghui & Wei, Jie, 2016. "A practical test for strict exogeneity in linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 147(C), pages 27-31.
    25. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    26. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    27. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    28. Enrique Moral-Benito, 2013. "Likelihood-Based Estimation of Dynamic Panels With Predetermined Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 451-472, October.
    29. repec:hal:spmain:info:hdl:2441/1mc4dip81d9t8r0t57fe1h8lap is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotschy, Rainer & Bloom, David E., 2023. "Population Aging and Economic Growth: From Demographic Dividend to Demographic Drag?," IZA Discussion Papers 16377, Institute of Labor Economics (IZA).
    2. Chen, Weihao & Cizek, Pavel, 2023. "Bias-Corrected Instrumental Variable Estimation in Linear Dynamic Panel Data Models," Discussion Paper 2023-028, Tilburg University, Center for Economic Research.
    3. Israel García & Bernd Hayo, 2023. "Fiscal Reform in Spanish Municipalities: Gender Differences in Budgetary Adjustment," MAGKS Papers on Economics 202306, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    4. Zaiyang Li & Hassan Swedy Lunku & Shaohua Yang & Agus Salim, 2024. "The dynamic interplay of foreign direct investment and education expenditure on Sub-Saharan Africa income inequality," International Economics and Economic Policy, Springer, vol. 21(3), pages 593-616, July.
    5. Philipp Weber & Laura A. Zell & Lars P. Feld & Christoph A. Schaltegger, 2024. "Functionality of Fiscal Rules in a Low Interest Rate Environment – New Empirical Results for Swiss Cantons," CESifo Working Paper Series 11351, CESifo.
    6. Leibrecht, Markus & Scharler, Johann & Zhoufu, Yan, 2023. "Automation and unemployment: Does collective bargaining moderate their association?," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 264-276.
    7. Dawit Z. Assefa & Alfonsina Iona & Leone Leonida, 2024. "Financial Development, Institutions, Democracy, Political Competition: A test of two tales," Working Papers 981, Queen Mary University of London, School of Economics and Finance.
    8. Iku Yoshimoto, . "Globalized production processes and foreign governmental lobbies: Analysing the United States Foreign Agents Registration Act reports," UNCTAD Transnational Corporations Journal, United Nations Conference on Trade and Development.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, vol. 5(1), pages 1-54, March.
    2. Norkutė, Milda & Westerlund, Joakim, 2019. "The factor analytical method for interactive effects dynamic panel models with moving average errors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 83-104.
    3. Cave, Joshua & Chaudhuri, Kausik & Kumbhakar, Subal C., 2023. "Dynamic firm performance and estimator choice: A comparison of dynamic panel data estimators," European Journal of Operational Research, Elsevier, vol. 307(1), pages 447-467.
    4. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    5. Alexander Chudik & M. Hashem Pesaran, 2017. "A Bias-Corrected Method of Moments Approach to Estimation of Dynamic Short-T Panels," CESifo Working Paper Series 6688, CESifo.
    6. Alexander Chudik & M. Hashem Pesaran, 2017. "An Augmented Anderson-Hsiao Estimator for Dynamic Short-T Panels," Globalization Institute Working Papers 327, Federal Reserve Bank of Dallas, revised 27 Mar 2021.
    7. Artūras Juodis, 2018. "Rank based cointegration testing for dynamic panels with fixed T," Empirical Economics, Springer, vol. 55(2), pages 349-389, September.
    8. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    9. Alexander Chudik & M. Hashem Pesaran & Jui‐Chung Yang, 2018. "Half‐panel jackknife fixed‐effects estimation of linear panels with weakly exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 816-836, September.
    10. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    11. Chen, Weihao & Cizek, Pavel, 2023. "Bias-Corrected Instrumental Variable Estimation in Linear Dynamic Panel Data Models," Discussion Paper 2023-028, Tilburg University, Center for Economic Research.
    12. Devdatta Ray & Mikael Linden, 2020. "Health expenditure, longevity, and child mortality: dynamic panel data approach with global data," International Journal of Health Economics and Management, Springer, vol. 20(1), pages 99-119, March.
    13. Arturas Juodis, 2013. "First Difference Transformation in Panel VAR models: Robustness, Estimation and Inference," UvA-Econometrics Working Papers 13-06, Universiteit van Amsterdam, Dept. of Econometrics.
    14. Jan F. Kiviet & Milan Pleus & Rutger Poldermans, 2014. "Accuracy and efficiency of various GMM inference techniques in dynamic micro panel data models," UvA-Econometrics Working Papers 14-09, Universiteit van Amsterdam, Dept. of Econometrics.
    15. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    16. Maurice J.G. Bun & Martin A. Carree & Artūras Juodis, 2017. "On Maximum Likelihood Estimation of Dynamic Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 463-494, August.
    17. Zhenlin Yang, 2014. "Initial-Condition Free Estimation of Fixed Effects Dynamic Panel Data Models," Working Papers 16-2014, Singapore Management University, School of Economics.
    18. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    19. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    20. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.

    More about this item

    Keywords

    Bias correction; Moment conditions; Autoregressive model; Panel data; Fixed effects; Random Effects;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:24:y:2022:i:c:p:116-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.