IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v31y2013i4p451-472.html
   My bibliography  Save this article

Likelihood-Based Estimation of Dynamic Panels With Predetermined Regressors

Author

Listed:
  • Enrique Moral-Benito

Abstract

This article discusses the likelihood-based estimation of panel data models with individual-specific effects and both lagged dependent variable regressors and additional predetermined explanatory variables. The resulting new estimator, labeled as subsystem limited information maximum likelihood (ssLIML), is asymptotically equivalent to standard panel generalized method of moment as N →∞ for fixed T but tends to present smaller biases in finite samples as illustrated in simulation experiments. Simulation results also indicate that the estimator is preferred to other alternatives available in the literature in terms of finite-sample performance. Finally, to provide an empirical illustration, I revisit the evidence on the relationship between income and democracy in a panel of countries using the proposed estimator.

Suggested Citation

  • Enrique Moral-Benito, 2013. "Likelihood-Based Estimation of Dynamic Panels With Predetermined Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 451-472, October.
  • Handle: RePEc:taf:jnlbes:v:31:y:2013:i:4:p:451-472
    DOI: 10.1080/07350015.2013.818003
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2013.818003
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2013.818003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    2. Alonso-Borrego, Cesar & Arellano, Manuel, 1999. "Symmetrically Normalized Instrumental-Variable Estimation Using Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 36-49, January.
    3. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    4. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelica Gonzalez, 2007. "Angelica Gonzalez," Edinburgh School of Economics Discussion Paper Series 168, Edinburgh School of Economics, University of Edinburgh.
    2. Angelica Gonzalez, 2007. "Empirical Likelihood: Improved Inference within Dynamic Panel Data Models," Edinburgh School of Economics Discussion Paper Series 154, Edinburgh School of Economics, University of Edinburgh.
    3. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    4. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    5. Stephen Bond & Anke Hoeffler, 2001. "GMM Estimation of Empirical Growth Models," Economics Series Working Papers 2001-W21, University of Oxford, Department of Economics.
    6. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    7. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    8. Orazio Attanasio & Peter Levell & Hamish Low & Virginia Sánchez-Marcos, 2015. "Aggregating Elasticities: Intensive and Extensive Margins of Female Labour Supply," NBER Working Papers 21315, National Bureau of Economic Research, Inc.
    9. Arellano, Manuel & Hansen, Lars Peter & Sentana, Enrique, 2012. "Underidentification?," Journal of Econometrics, Elsevier, vol. 170(2), pages 256-280.
    10. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    11. Bond, Stephen & Bowsher, Clive & Windmeijer, Frank, 2001. "Criterion-based inference for GMM in autoregressive panel data models," Economics Letters, Elsevier, vol. 73(3), pages 379-388, December.
    12. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    13. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    14. Ackerberg, Daniel A. & Frazer, Garth & Kim, Kyoo il & Luo, Yao & Su, Yingjun, 2023. "Under-identification of structural models based on timing and information set assumptions," Journal of Econometrics, Elsevier, vol. 237(1).
    15. Bao, Yong & Yu, Xuewen, 2023. "Indirect inference estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1027-1053.
    16. Jing Guo & Wei Liu & Qiping Sun & Yiqun Zhou & Yonggang Wu, 2022. "Medium‐Term growth effects of Disasters‐Empirical analysis based on provincial panel data in China," Asian Economic Journal, East Asian Economic Association, vol. 36(1), pages 47-71, March.
    17. Aedín Doris & Donal O’Neill & Olive Sweetman, 2013. "Identification of the covariance structure of earnings using the GMM estimator," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(3), pages 343-372, September.
    18. Kazuhiko Hayakawa, 2006. "The Asymptotic Properties of the System GMM Estimator in Dynamic Panel Data Models When Both N and T are Large," Hi-Stat Discussion Paper Series d05-129, Institute of Economic Research, Hitotsubashi University.
    19. Yongfu Huang, 2011. "Private investment and financial development in a globalized world," Empirical Economics, Springer, vol. 41(1), pages 43-56, August.
    20. Alimi, R. Santos, 2015. "Financial deepening and economic growth: A System GMM Panel Analysis with application to 7 SSA countries," MPRA Paper 65789, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:31:y:2013:i:4:p:451-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.