IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v37y2018i6p650-693.html
   My bibliography  Save this article

First difference transformation in panel VAR models: Robustness, estimation, and inference

Author

Listed:
  • Artūras Juodis

Abstract

This article considers estimation of Panel Vector Autoregressive Models of order 1 (PVAR(1)) with focus on fixed T consistent estimation methods in First Differences (FD) with additional strictly exogenous regressors. Additional results for the Panel FD ordinary least squares (OLS) estimator and the FDLS type estimator of Han and Phillips (2010) are provided. Furthermore, we simplify the analysis of Binder et al. (2005) by providing additional analytical results and extend the original model by taking into account possible cross-sectional heteroscedasticity and presence of strictly exogenous regressors. We show that in the three wave panel the log-likelihood function of the unrestricted Transformed Maximum Likelihood (TML) estimator might violate the global identification assumption. The finite-sample performance of the analyzed methods is investigated in a Monte Carlo study.

Suggested Citation

  • Artūras Juodis, 2018. "First difference transformation in panel VAR models: Robustness, estimation, and inference," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 650-693, July.
  • Handle: RePEc:taf:emetrv:v:37:y:2018:i:6:p:650-693
    DOI: 10.1080/07474938.2016.1139559
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2016.1139559
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2016.1139559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    2. Elvis Dze Achuo, 2020. "How Efficient are Government Stringency Responses in Curbing the Spread of the COVID-19 Pandemic?," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 4(8), pages 629-635, August.
    3. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    4. Breitung, Jörg & Kripfganz, Sebastian & Hayakawa, Kazuhiko, 2022. "Bias-corrected method of moments estimators for dynamic panel data models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 116-132.
    5. Juodis, Artūras & Poldermans, Rutger W., 2021. "Backward mean transformation in unit root panel data models," Economics Letters, Elsevier, vol. 201(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:37:y:2018:i:6:p:650-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.