IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2307.html
   My bibliography  Save this paper

Limit Theory for Locally Flat Functional Coefficient Regression

Author

Abstract

Functional coefficient (FC) regressions allow for systematic flexibility in the responsiveness of a dependent variable to movements in the regressors, making them attractive in applications where marginal effects may depend on covariates. Such models are commonly estimated by local kernel regression methods. This paper explores situations where responsiveness to covariates is locally flat or fixed. In such cases, the limit theory of FC kernel regression is shown to depend intimately on functional shape in ways that affect rates of convergence, optimal bandwidth selection, estimation, and inference. The paper develops new asymptotics that take account of shape characteristics of the function in the locality of the point of estimation. Both stationary and integrated regressor cases are examined. Locally flat behavior in the coefficient function has, as expected, a major effect on bias and thereby on the trade-off between bias and variance, and on optimal bandwidth choice. In FC cointegrating regression, flat behavior materially changes the limit distribution by introducing the shape characteristics of the function into the limiting distribution through variance as well as centering. Both bias and variance depend on the number of zero derivatives in the coefficient function. In the boundary case where the number of zero derivatives tends to infinity, near parametric rates of convergence apply for both stationary and nonstationary cases. Implications for inference are discussed and simulations characterizing finite sample behavior are reported.

Suggested Citation

  • Peter C.B. Phillips & Ying Wang, 2021. "Limit Theory for Locally Flat Functional Coefficient Regression," Cowles Foundation Discussion Papers 2307, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2307
    Note: Includes Supplimental Material
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d23/d2307-a.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.
    2. Ying Wang & Peter C. B. Phillips, 2024. "Limit Theory of Local Polynomial Estimation in Functional Coefficient Regression," Cowles Foundation Discussion Papers 2398, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Keywords

    Boundary asymptotics; Functional coefficient regression; Limit theory; Locally flat regression coefficient; Near-parametric rate;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.