IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2398.html
   My bibliography  Save this paper

Limit Theory of Local Polynomial Estimation in Functional Coefficient Regression

Author

Listed:

Abstract

Limit theory for functional coefficient cointegrating regression was recently found to be considerably more complex than earlier understood. The issues were explained and correct limit theory derived for the kernel weighted local constant estimator in Phillips and Wang (2023b). The present paper provides complete limit theory for the general kernel weighted local p-th order polynomial estimator of the functional coefficient and the coefficient deriva-tives. Both stationary and nonstationary regressors are allowed. Implications for bandwidth selection are discussed. An adaptive procedure to select the fit order p is proposed and found to work well. A robust t-ratio is constructed following the new correct limit theory, which corrects and improves the usual t-ratio in the literature. Furthermore, the robust t-ratio is valid and works well regardless of the properties of the regressors, thereby providing a unified procedure to compute the t-ratio and facilitating practical inference. Testing constancy of the functional coefficient is also considered. Supportive finite sample studies are provided that corroborate the new asymptotic theory.

Suggested Citation

  • Ying Wang & Peter C. B. Phillips, 2024. "Limit Theory of Local Polynomial Estimation in Functional Coefficient Regression," Cowles Foundation Discussion Papers 2398, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2398
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/2024-07/d2398.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Yiguo & Cai, Zongwu & Li, Qi, 2016. "A Consistent Nonparametric Test On Semiparametric Smooth Coefficient Models With Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 32(4), pages 988-1022, August.
    2. Li, Degui & Phillips, Peter C.B. & Gao, Jiti, 2020. "Kernel-based Inference in Time-Varying Coefficient Cointegrating Regression," Journal of Econometrics, Elsevier, vol. 215(2), pages 607-632.
    3. Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.
    4. Wang, Ying & Tu, Yundong & Chen, Song Xi, 2016. "Improving inflation prediction with the quantity theory," Economics Letters, Elsevier, vol. 149(C), pages 112-115.
    5. Phillips, Peter C. B. & Wang, Ying, 2023. "Limit Theory For Locally Flat Functional Coefficient Regression," Econometric Theory, Cambridge University Press, vol. 39(5), pages 900-949, October.
    6. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    7. Gu, Jingping & Liang, Zhongwen, 2014. "Testing cointegration relationship in a semiparametric varying coefficient model," Journal of Econometrics, Elsevier, vol. 178(P1), pages 57-70.
    8. Hongjun Li & Zhongjian Lin & Cheng Hsiao, 2015. "Testing purchasing power parity hypothesis: a semiparametric varying coefficient approach," Empirical Economics, Springer, vol. 48(1), pages 427-438, February.
    9. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    10. Yundong Tu & Ying Wang, 2019. "Functional Coefficient Cointegration Models Subject to Time–Varying Volatility with an Application to the Purchasing Power Parity," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(6), pages 1401-1423, December.
    11. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
    2. Haiqi Li Author-Name-First: Haiqi & Jing Zhang & Chaowen Zheng, 2023. "Estimating and Testing for Functional Coefficient Quantile Cointegrating Regression," Economics Discussion Papers em-dp2023-07, Department of Economics, University of Reading.
    3. Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.
    4. Tu, Yundong & Wang, Ying, 2022. "Spurious functional-coefficient regression models and robust inference with marginal integration," Journal of Econometrics, Elsevier, vol. 229(2), pages 396-421.
    5. Qiying Wang & Peter C. B. Phillips & Ying Wang, 2023. "New asymptotics applied to functional coefficient regression and climate sensitivity analysis," Cowles Foundation Discussion Papers 2365, Cowles Foundation for Research in Economics, Yale University.
    6. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
    7. Gan, Li & Hsiao, Cheng & Xu, Shu, 2014. "Model specification test with correlated but not cointegrated variables," Journal of Econometrics, Elsevier, vol. 178(P1), pages 80-85.
    8. Liang, Zhongwen & Li, Qi, 2012. "Functional coefficient regression models with time trend," Journal of Econometrics, Elsevier, vol. 170(1), pages 15-31.
    9. Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
    10. Qiying Wang & Peter C. B. Phillips, 2022. "A General Limit Theory for Nonlinear Functionals of Nonstationary Time Series," Cowles Foundation Discussion Papers 2337, Cowles Foundation for Research in Economics, Yale University.
    11. Chuanhua Wei & Lijie Wan, 2015. "Efficient Estimation in Heteroscedastic Varying Coefficient Models," Econometrics, MDPI, vol. 3(3), pages 1-7, July.
    12. Henderson, Daniel J. & Kumbhakar, Subal C. & Li, Qi & Parmeter, Christopher F., 2015. "Smooth coefficient estimation of a seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 148-162.
    13. repec:wyi:journl:002112 is not listed on IDEAS
    14. Phillips, Peter C.B. & Wang, Ying, 2022. "Functional coefficient panel modeling with communal smoothing covariates," Journal of Econometrics, Elsevier, vol. 227(2), pages 371-407.
    15. Chen, Xirong & Huang, Ta-Cheng & Li, Qi, 2017. "An alternative bandwidth selection method for estimating functional coefficient models," Economics Letters, Elsevier, vol. 156(C), pages 27-31.
    16. Li, Li & Tu, Yundong, 2022. "The varying spillover of U.S. systemic risk: A functional-coefficient cointegration approach," Economics Letters, Elsevier, vol. 212(C).
    17. Polbin, Andrey & Skrobotov, Anton, 2022. "On decrease in oil price elasticity of GDP and investment in Russia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 66, pages 5-24.
    18. Zhongwen Liang & Zhongjian Lin & Cheng Hsiao, 2015. "Local Linear Estimation of a Nonparametric Cointegration Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 882-906, December.
    19. Luya Wang & Zhongwen Liang & Juan Lin & Qi Li, 2015. "Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 353-369, November.
    20. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    21. Sun, Yiguo & Hsiao, Cheng & Li, Qi, 2011. "Measuring correlations of integrated but not cointegrated variables: A semiparametric approach," Journal of Econometrics, Elsevier, vol. 164(2), pages 252-267, October.

    More about this item

    Keywords

    bandwidth selection; functional-coefficient cointegration; local p-th order polyno-mial approximation; robust t-ratio;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.