IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i528p1908-1925.html
   My bibliography  Save this article

Tuning-Free Heterogeneous Inference in Massive Networks

Author

Listed:
  • Zhao Ren
  • Yongjian Kang
  • Yingying Fan
  • Jinchi Lv

Abstract

Heterogeneity is often natural in many contemporary applications involving massive data. While posing new challenges to effective learning, it can play a crucial role in powering meaningful scientific discoveries through the integration of information among subpopulations of interest. In this article, we exploit multiple networks with Gaussian graphs to encode the connectivity patterns of a large number of features on the subpopulations. To uncover the underlying sparsity structures across subpopulations, we suggest a framework of large-scale tuning-free heterogeneous inference, where the number of networks is allowed to diverge. In particular, two new tests, the chi-based and the linear functional-based tests, are introduced and their asymptotic null distributions are established. Under mild regularity conditions, we establish that both tests are optimal in achieving the testable region boundary and the sample size requirement for the latter test is minimal. Both theoretical guarantees and the tuning-free property stem from efficient multiple-network estimation by our newly suggested heterogeneous group square-root Lasso for high-dimensional multi-response regression with heterogeneous noises. To solve this convex program, we further introduce a scalable algorithm that enjoys provable convergence to the global optimum. Both computational and theoretical advantages are elucidated through simulation and real data examples. Supplementary materials for this article are available online.

Suggested Citation

  • Zhao Ren & Yongjian Kang & Yingying Fan & Jinchi Lv, 2019. "Tuning-Free Heterogeneous Inference in Massive Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1908-1925, October.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1908-1925
    DOI: 10.1080/01621459.2018.1537920
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1537920
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1537920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1908-1925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.