IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v202y2018i2p286-305.html
   My bibliography  Save this article

Nonparametric fixed effects model for panel data with locally stationary regressors

Author

Listed:
  • Pei, Youquan
  • Huang, Tao
  • You, Jinhong

Abstract

We develop methods for inference in nonparametric time-varying fixed effects panel data models that allow for locally stationary regressors and for the time series length T and cross-section size N both being large. We first develop a pooled nonparametric profile least squares dummy variable approach to estimate the nonparametric function, and establish the optimal convergence rate and asymptotic normality of the resultant estimator. We then propose a test statistic to check whether the bivariate nonparametric function is time-varying or the time effect is separable, and derive the asymptotic distribution of the proposed test statistic. We present several simulated examples and two real data analyses to illustrate the finite sample performance of the proposed methods.

Suggested Citation

  • Pei, Youquan & Huang, Tao & You, Jinhong, 2018. "Nonparametric fixed effects model for panel data with locally stationary regressors," Journal of Econometrics, Elsevier, vol. 202(2), pages 286-305.
  • Handle: RePEc:eee:econom:v:202:y:2018:i:2:p:286-305
    DOI: 10.1016/j.jeconom.2017.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617302233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badi H. Baltagi & Dong Li, 2002. "Series Estimation of Partially Linear Panel Data Models with Fixed Effects," Annals of Economics and Finance, Society for AEF, vol. 3(1), pages 103-116, May.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Dong, Chaohua & Gao, Jiti & Peng, Bin, 2015. "Semiparametric single-index panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 188(1), pages 301-312.
    4. Degui Li & Jia Chen & Jiti Gao, 2011. "Non‐parametric time‐varying coefficient panel data models with fixed effects," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 387-408, October.
    5. Dette, Holger & Preuß, Philip & Vetter, Mathias, 2011. "A Measure of Stationarity in Locally Stationary Processes With Applications to Testing," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1113-1124.
    6. Chaohua Dong & Jiti Gao & Bin Peng, 2015. "Partially Linear Panel Data Models with Cross-Sectional Dependence and Nonstationarity," Monash Econometrics and Business Statistics Working Papers 7/15, Monash University, Department of Econometrics and Business Statistics.
    7. Cai, Zongwu & Li, Qi, 2008. "Nonparametric Estimation Of Varying Coefficient Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1321-1342, October.
    8. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "Semiparametric trending panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
    9. Fan, Jianqing & Peng, Heng & Huang, Tao, 2005. "Semilinear High-Dimensional Model for Normalization of Microarray Data: A Theoretical Analysis and Partial Consistency," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 781-796, September.
    10. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Vogt, Michael, 2015. "Testing For Structural Change In Time-Varying Nonparametric Regression Models," Econometric Theory, Cambridge University Press, vol. 31(4), pages 811-859, August.
    12. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    13. Ting Zhang & Wei Biao Wu, 2011. "Testing parametric assumptions of trends of a nonstationary time series," Biometrika, Biometrika Trust, vol. 98(3), pages 599-614.
    14. Su, Liangjun & Ullah, Aman, 2006. "Profile likelihood estimation of partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 92(1), pages 75-81, July.
    15. Zheng Tracy Ke & Jianqing Fan & Yichao Wu, 2015. "Homogeneity Pursuit," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 175-194, March.
    16. Jianqing Fan & Yuan Liao & Jiawei Yao, 2015. "Power Enhancement in High‐Dimensional Cross‐Sectional Tests," Econometrica, Econometric Society, vol. 83(4), pages 1497-1541, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-Wei Su & Yannong Xie & Sadaf Shahab & Ch. Muhammad Nadeem Faisal & Muhammad Hafeez & Ghulam Muhammad Qamri, 2021. "Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO 2 Emission for BRICS," IJERPH, MDPI, vol. 18(1), pages 1-13, January.
    2. Qian Huang & Jinhong You & Liwen Zhang, 2022. "Efficient inference of longitudinal/functional data models with time‐varying additive structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 744-771, June.
    3. Hua Liu & Youquan Pei & Qunfang Xu, 2020. "Estimation for varying coefficient panel data model with cross-sectional dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 377-410, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bang-Qiang He & Xing-Jian Hong & Guo-Liang Fan, 2020. "Penalized empirical likelihood for partially linear errors-in-variables panel data models with fixed effects," Statistical Papers, Springer, vol. 61(6), pages 2351-2381, December.
    2. Jia Chen & Degui Li & Jiti Gao, 2013. "Non- and Semi-Parametric Panel Data Models: A Selective Review," Monash Econometrics and Business Statistics Working Papers 18/13, Monash University, Department of Econometrics and Business Statistics.
    3. Hu, Xuemei, 2017. "Semi-parametric inference for semi-varying coefficient panel data model with individual effects," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 262-281.
    4. Xuan Liang & Jiti Gao & Xiaodong Gong, 2019. "Time-Varying Coefficient Spatial Autoregressive Panel Data Model with Fixed Effects," Monash Econometrics and Business Statistics Working Papers 26/19, Monash University, Department of Econometrics and Business Statistics.
    5. Liping Zhu & Jinhong You & Qunfang Xu, 2014. "Statistical Inference for Single-index Panel Data Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 830-843, September.
    6. Feng, Sanying & He, Wenqi & Li, Feng, 2020. "Model detection and estimation for varying coefficient panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Lena Boneva (Körber) & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers 02/13, Institute for Fiscal Studies.
    8. Jia Chen & Jiti Gao, 2014. "Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 15/14, Monash University, Department of Econometrics and Business Statistics.
    9. Badi H. Baltagi & Georges Bresson & Jean-Michel Etienne, 2020. "Growth Empirics: a Bayesian Semiparametric Model With Random Coefficients for a Panel of OECD Countries," Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 217-253, Emerald Group Publishing Limited.
    10. Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015. "A semiparametric model for heterogeneous panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
    11. Li, Rui & Wan, Alan T.K. & You, Jinhong, 2016. "Semiparametric GMM estimation and variable selection in dynamic panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 401-423.
    12. Huang, Bai & Lee, Tae-Hwy & Ullah, Aman, 2020. "Combined estimation of semiparametric panel data models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 30-45.
    13. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    14. Fei Liu & Jiti Gao & Yanrong Yang, 2020. "Time-Varying Panel Data Models with an Additive Factor Structure," Monash Econometrics and Business Statistics Working Papers 42/20, Monash University, Department of Econometrics and Business Statistics.
    15. Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
    16. Zhang, Junhua & Feng, Sanying & Li, Gaorong & Lian, Heng, 2011. "Empirical likelihood inference for partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 113(2), pages 165-167.
    17. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    18. Jiti Gao & Kai Xia, 2017. "Heterogeneous panel data models with cross-sectional dependence," Monash Econometrics and Business Statistics Working Papers 16/17, Monash University, Department of Econometrics and Business Statistics.
    19. Yashar Tarverdi, 2018. "Aspects of Governance and $$\hbox {CO}_2$$ CO 2 Emissions: A Non-linear Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(1), pages 167-194, January.
    20. Malikov, Emir & Kumbhakar, Subal C. & Sun, Yiguo, 2016. "Varying coefficient panel data model in the presence of endogenous selectivity and fixed effects," Journal of Econometrics, Elsevier, vol. 190(2), pages 233-251.

    More about this item

    Keywords

    Panel data models; Fixed effect; Locally stationary; Local linear estimation; Hypothesis testing;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:202:y:2018:i:2:p:286-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.