IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i04p811-859_00.html
   My bibliography  Save this article

Testing For Structural Change In Time-Varying Nonparametric Regression Models

Author

Listed:
  • Vogt, Michael

Abstract

In this paper, we consider a nonparametric model with a time-varying regression function and locally stationary regressors. We are interested in the question whether the regression function has the same shape over a given time span. To tackle this testing problem, we propose a kernel-based L2-test statistic. We derive the asymptotic distribution of the statistic both under the null and under fixed and local alternatives. To improve the small sample behavior of the test, we set up a wild bootstrap procedure and derive the asymptotic properties thereof. The theoretical analysis of the paper is complemented by a simulation study and a real data example.

Suggested Citation

  • Vogt, Michael, 2015. "Testing For Structural Change In Time-Varying Nonparametric Regression Models," Econometric Theory, Cambridge University Press, vol. 31(4), pages 811-859, August.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:811-859_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000565/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    2. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    3. Pei, Youquan & Huang, Tao & You, Jinhong, 2018. "Nonparametric fixed effects model for panel data with locally stationary regressors," Journal of Econometrics, Elsevier, vol. 202(2), pages 286-305.
    4. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
    5. G. Rigatos, 2021. "Statistical Validation of Multi-Agent Financial Models Using the H-Infinity Kalman Filter," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 777-798, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:811-859_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.