IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v192y2016i2p366-373.html
   My bibliography  Save this article

The structure of multivariate AR and ARMA systems: Regular and singular systems; the single and the mixed frequency case

Author

Listed:
  • Anderson, Brian D.O.
  • Deistler, Manfred
  • Felsenstein, Elisabeth
  • Koelbl, Lukas

Abstract

This paper is concerned with the structure of multivariate AR and ARMA systems. The emphasis is on two “non-standard” cases: We deal with the structure of singular AR and ARMA systems which generate singular spectral densities and with identifiability of ARMA systems from mixed frequency data. In the mixed frequency case we show that, for the case where the MA order is smaller than or equal to the AR order, identifiability can be achieved generically. Furthermore, we demonstrate that for a pure MA system identifiability cannot be achieved. The paper generalizes the results obtained in Anderson et al. (2015) for the AR case.

Suggested Citation

  • Anderson, Brian D.O. & Deistler, Manfred & Felsenstein, Elisabeth & Koelbl, Lukas, 2016. "The structure of multivariate AR and ARMA systems: Regular and singular systems; the single and the mixed frequency case," Journal of Econometrics, Elsevier, vol. 192(2), pages 366-373.
  • Handle: RePEc:eee:econom:v:192:y:2016:i:2:p:366-373
    DOI: 10.1016/j.jeconom.2016.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407616300070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2016.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    2. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    3. Weitian Chen & Brian D.O. Anderson & Manfred Deistler & Alexander Filler, 2011. "Solutions of Yule‐Walker equations for singular AR processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 531-538, September.
    4. de Jong, Piet & Penzer, Jeremy, 2004. "The ARMA model in state space form," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 119-125, October.
    5. Hannan, E J, 1971. "The Identification Problem for Multiple Equation Systems with Moving Average Errors," Econometrica, Econometric Society, vol. 39(5), pages 751-765, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Gersing & Leopold Soegner & Manfred Deistler, 2022. "Retrieval from Mixed Sampling Frequency: Generic Identifiability in the Unit Root VAR," Papers 2204.05952, arXiv.org, revised Jul 2023.
    2. Majid M. Al-Sadoon & Piotr Zwiernik, 2019. "The Identification Problem for Linear Rational Expectations Models," Working Papers 1114, Barcelona School of Economics.
    3. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    4. Marc Hallin, 2022. "Manfred Deistler and the General Dynamic Factor Model Approach to the Analysis of High-Dimensional Time Series," Working Papers ECARES 2022-30, ULB -- Universite Libre de Bruxelles.
    5. Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018. "Mixed frequency models with MA components," Working Paper Series 2206, European Central Bank.
    6. Deistler, Manfred & Koelbl, Lukas & Anderson, Brian D.O., 2017. "Non-identifiability of VMA and VARMA systems in the mixed frequency case," Econometrics and Statistics, Elsevier, vol. 4(C), pages 31-38.
    7. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    8. Deistler, Manfred & Wagner, Martin, 2017. "Cointegration in singular ARMA models," Economics Letters, Elsevier, vol. 155(C), pages 39-42.
    9. Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
    10. Siegfried Hörmann & Gilles Nisol, 2021. "Prediction of Singular VARs and an Application to Generalized Dynamic Factor Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 295-313, May.
    11. Celina Pestano-Gabino & Concepción González-Concepción & María Candelaria Gil-Fariña, 2024. "VARMA Models with Single- or Mixed-Frequency Data: New Conditions for Extended Yule–Walker Identification," Mathematics, MDPI, vol. 12(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti, 2021. "Predictability, real time estimation, and the formulation of unobserved components models," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 433-454, April.
    2. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    3. Enrique Martínez García, 2020. "A Matter of Perspective: Mapping Linear Rational Expectations Models into Finite-Order VAR Form," Globalization Institute Working Papers 389, Federal Reserve Bank of Dallas.
    4. Bernd Funovits, 2014. "Implications of Stochastic Singularity in Linear Multivariate Rational Expectations Models," Vienna Economics Papers vie1405, University of Vienna, Department of Economics.
    5. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    6. Bernd Funovits & Alexander Braumann, 2021. "Identifiability of structural singular vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 431-441, July.
    7. Majid Al-Sadoon & Piotr Zwiernik, 2019. "The identification problem for linear rational expectations models," Economics Working Papers 1669, Department of Economics and Business, Universitat Pompeu Fabra.
    8. Philipp Gersing & Christoph Rust & Manfred Deistler, 2023. "Weak Factors are Everywhere," Papers 2307.10067, arXiv.org, revised Jan 2024.
    9. Bernd Funovits, 2014. "Implications of Stochastic Singularity in Linear Multivariate Rational Expectations Models," Vienna Economics Papers 1405, University of Vienna, Department of Economics.
    10. Juan José Echavarría & Andrés González, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 14-66, December.
    11. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    12. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    13. Jean-Bernard Chatelain & Kirsten Ralf, 2017. "Can We Identify the Fed's Preferences?," Working Papers halshs-01549908, HAL.
    14. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    15. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    16. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    17. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    18. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    19. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    20. Zadrozny, Peter A., 2016. "Extended Yule–Walker identification of VARMA models with single- or mixed-frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 438-446.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:192:y:2016:i:2:p:366-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.