IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.05952.html
   My bibliography  Save this paper

Retrieval from Mixed Sampling Frequency: Generic Identifiability in the Unit Root VAR

Author

Listed:
  • Philipp Gersing
  • Leopold Soegner
  • Manfred Deistler

Abstract

The "REtrieval from MIxed Sampling" (REMIS) approach based on blocking developed in Anderson et al. (2016a) is concerned with retrieving an underlying high frequency model from mixed frequency observations. In this paper we investigate parameter-identifiability in the Johansen (1995) vector error correction model for mixed frequency data. We prove that from the second moments of the blocked process after taking differences at lag N (N is the slow sampling rate), the parameters of the high frequency system are generically identified. We treat the stock and the flow case as well as deterministic terms.

Suggested Citation

  • Philipp Gersing & Leopold Soegner & Manfred Deistler, 2022. "Retrieval from Mixed Sampling Frequency: Generic Identifiability in the Unit Root VAR," Papers 2204.05952, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2204.05952
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.05952
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    2. Deistler, Manfred & Seifert, Hans-Gunther, 1978. "Identifiability and Consistent Estimability in Econometric Models," Econometrica, Econometric Society, vol. 46(4), pages 969-980, July.
    3. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    4. Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
    5. Henrik Hansen & Søren Johansen, 1999. "Some tests for parameter constancy in cointegrated VAR-models," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 306-333.
    6. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    7. Anderson, Brian D.O. & Deistler, Manfred & Felsenstein, Elisabeth & Koelbl, Lukas, 2016. "The structure of multivariate AR and ARMA systems: Regular and singular systems; the single and the mixed frequency case," Journal of Econometrics, Elsevier, vol. 192(2), pages 366-373.
    8. Chambers, Marcus J., 2003. "The Asymptotic Efficiency Of Cointegration Estimators Under Temporal Aggregation," Econometric Theory, Cambridge University Press, vol. 19(1), pages 49-77, February.
    9. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    10. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
    11. Bauer, Dietmar & Wagner, Martin, 2012. "A State Space Canonical Form For Unit Root Processes," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1313-1349, December.
    12. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    13. Deistler, Manfred & Koelbl, Lukas & Anderson, Brian D.O., 2017. "Non-identifiability of VMA and VARMA systems in the mixed frequency case," Econometrics and Statistics, Elsevier, vol. 4(C), pages 31-38.
    14. Hansen, Peter Reinhard & Johansen, Soren, 1998. "Workbook on Cointegration," OUP Catalogue, Oxford University Press, number 9780198776079.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    2. Deistler, Manfred & Koelbl, Lukas & Anderson, Brian D.O., 2017. "Non-identifiability of VMA and VARMA systems in the mixed frequency case," Econometrics and Statistics, Elsevier, vol. 4(C), pages 31-38.
    3. Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018. "Mixed frequency models with MA components," Working Paper Series 2206, European Central Bank.
    4. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    5. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    6. Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.
    7. Tillmann, Peter, 2003. "Cointegration and Regime-Switching Risk Premia in the U.S. Term Structure of Interest Rates," Bonn Econ Discussion Papers 27/2003, University of Bonn, Bonn Graduate School of Economics (BGSE).
    8. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    9. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    10. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    11. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    12. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    13. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
    14. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    15. Lin, Jiahe & Michailidis, George, 2024. "A multi-task encoder-dual-decoder framework for mixed frequency data prediction," International Journal of Forecasting, Elsevier, vol. 40(3), pages 942-957.
    16. Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
    17. Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
    18. Qian, Hang, 2016. "A computationally efficient method for vector autoregression with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 433-437.
    19. Dufrénot, Gilles & Rhouzlane, Meryem & Vaccaro-Grange, Etienne, 2022. "Potential growth and natural yield curve in Japan," Journal of International Money and Finance, Elsevier, vol. 124(C).
    20. Morita, Hiroshi & 森田, 裕史, 2019. "Forecasting Public Investment Using Daily Stock Returns," Discussion paper series HIAS-E-88, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.05952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.