IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v70y2004i1p119-125.html
   My bibliography  Save this article

The ARMA model in state space form

Author

Listed:
  • de Jong, Piet
  • Penzer, Jeremy

Abstract

This article explores alternative state space representations for ARMA models. We advocate representations that have minimal state order and appealing Kalman filter steady state properties. We derive expressions for smoother output and describe concrete connections to classical infinite sample representations.

Suggested Citation

  • de Jong, Piet & Penzer, Jeremy, 2004. "The ARMA model in state space form," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 119-125, October.
  • Handle: RePEc:eee:stapro:v:70:y:2004:i:1:p:119-125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00233-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz, Guzmán & Moreno, Blanca & Coto, José & Gómez-Aleixandre, Javier, 2015. "Valuation of wind power distributed generation by using Longstaff–Schwartz option pricing method," Applied Energy, Elsevier, vol. 145(C), pages 223-233.
    2. Enrique Martínez García, 2020. "A Matter of Perspective: Mapping Linear Rational Expectations Models into Finite-Order VAR Form," Globalization Institute Working Papers 389, Federal Reserve Bank of Dallas.
    3. Anderson, Brian D.O. & Deistler, Manfred & Felsenstein, Elisabeth & Koelbl, Lukas, 2016. "The structure of multivariate AR and ARMA systems: Regular and singular systems; the single and the mixed frequency case," Journal of Econometrics, Elsevier, vol. 192(2), pages 366-373.
    4. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    5. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    6. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    7. Hang Qian, 2014. "A Flexible State Space Model And Its Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 79-88, March.
    8. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    9. Dong, A.X.D. & Chan, J.S.K., 2013. "Bayesian analysis of loss reserving using dynamic models with generalized beta distribution," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 355-365.
    10. Piotr Bórawski & Marta Guth & Aneta Bełdycka-Bórawska & Krzysztof Józef Jankowski & Andrzej Parzonko & James W. Dunn, 2020. "Investments in Polish Agriculture: How Production Factors Shape Conditions for Environmental Protection?," Sustainability, MDPI, vol. 12(19), pages 1-26, October.
    11. Tommaso Proietti, 2021. "Predictability, real time estimation, and the formulation of unobserved components models," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 433-454, April.
    12. Chuanjie Xie & Chong Huang & Deqiang Zhang & Wei He, 2021. "BiLSTM-I: A Deep Learning-Based Long Interval Gap-Filling Method for Meteorological Observation Data," IJERPH, MDPI, vol. 18(19), pages 1-12, September.
    13. Piotr Bórawski & Marek Bartłomiej Bórawski & Andrzej Parzonko & Ludwik Wicki & Tomasz Rokicki & Aleksandra Perkowska & James William Dunn, 2021. "Development of Organic Milk Production in Poland on the Background of the EU," Agriculture, MDPI, vol. 11(4), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:70:y:2004:i:1:p:119-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.