IDEAS home Printed from https://ideas.repec.org/a/ecm/quante/v4y2013i2p231-267.html
   My bibliography  Save this article

Sensitivity to missing data assumptions: Theory and an evaluation of the U.S. wage structure

Author

Listed:
  • Patrick Kline
  • Andres Santos

Abstract

This paper develops methods for assessing the sensitivity of empirical conclusions regarding conditional distributions to departures from the missing at random (MAR) assumption. We index the degree of non-ignorable selection governing the missingness process by the maximal Kolmogorov-Smirnov (KS) distance between the distributions of missing and observed outcomes across all values of the covariates. Sharp bounds on minimum mean square approximations to conditional quantiles are derived as a function of the nominal level of selection considered in the sensitivity analysis and a weighted bootstrap procedure is developed for conducting inference. Using these techniques, we conduct an empirical assessment of the sensitivity of observed earnings patterns in U.S. Census data to deviations from the MAR assumption. We find that the well-documented increase in the returns to schooling between 1980 and 1990 is relatively robust to deviations from the missing at random assumption except at the lowest quantiles of the distribution, but that conclusions regarding heterogeneity in returns and changes in the returns function between 1990 and 2000 are very sensitive to departures from ignorability.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Patrick Kline & Andres Santos, 2013. "Sensitivity to missing data assumptions: Theory and an evaluation of the U.S. wage structure," Quantitative Economics, Econometric Society, vol. 4(2), pages 231-267, July.
  • Handle: RePEc:ecm:quante:v:4:y:2013:i:2:p:231-267
    DOI: QE176
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/QE176
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/QE176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    2. Lillard, Lee & Smith, James P & Welch, Finis, 1986. "What Do We Really Know about Wages? The Importance of Nonreporting and Census Imputation," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 489-506, June.
    3. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    4. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    5. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    6. Thomas Lemieux, 2006. "Postsecondary Education and Increasing Wage Inequality," American Economic Review, American Economic Association, vol. 96(2), pages 195-199, May.
    7. Card, David & Lemieux, Thomas, 1996. "Wage dispersion, returns to skill, and black-white wage differentials," Journal of Econometrics, Elsevier, vol. 74(2), pages 319-361, October.
    8. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2008. "Using Selection on Observed Variables to Assess Bias from Unobservables When Evaluating Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 345-350, May.
    9. Heckman, James J. & Lochner, Lance J. & Todd, Petra E., 2006. "Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond," Handbook of the Economics of Education, in: Erik Hanushek & F. Welch (ed.), Handbook of the Economics of Education, edition 1, volume 1, chapter 7, pages 307-458, Elsevier.
    10. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    11. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    12. Derek Neal, 2004. "The Measured Black-White Wage Gap among Women Is Too Small," Journal of Political Economy, University of Chicago Press, vol. 112(S1), pages 1-28, February.
    13. Horowitz, Joel L. & Manski, Charles F., 2006. "Identification and estimation of statistical functionals using incomplete data," Journal of Econometrics, Elsevier, vol. 132(2), pages 445-459, June.
    14. Barry T. Hirsch & Edward J. Schumacher, 2004. "Match Bias in Wage Gap Estimates Due to Earnings Imputation," Journal of Labor Economics, University of Chicago Press, vol. 22(3), pages 689-722, July.
    15. Juhn, Chinhui & Murphy, Kevin M & Pierce, Brooks, 1993. "Wage Inequality and the Rise in Returns to Skill," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 410-442, June.
    16. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    17. Jay Bhattacharya & Azeem M. Shaikh & Edward Vytlacil, 2008. "Treatment Effect Bounds under Monotonicity Assumptions: An Application to Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 351-356, May.
    18. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    19. Azeem Shaikh & Edward Vytlacil, 2005. "Threshold Crossing Models and Bounds on Treatment Effects: A Nonparametric Analysis," NBER Technical Working Papers 0307, National Bureau of Economic Research, Inc.
    20. Maria Ponomareva & Elie Tamer, 2011. "Misspecification in moment inequality models: back to moment equalities?," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 186-203, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    2. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Maasoumi, Esfandiar & Wang, Le, 2017. "What can we learn about the racial gap in the presence of sample selection?," Journal of Econometrics, Elsevier, vol. 199(2), pages 117-130.
    4. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    5. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    6. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    7. Juan Carlos Escanciano & Lin Zhu, 2013. "Set inferences and sensitivity analysis in semiparametric conditionally identified models," CeMMAP working papers CWP55/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2018. "Distribution regression with sample selection, with an application to wage decompositions in the UK," CeMMAP working papers CWP68/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    10. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Juan Carlos Escanciano & Lin Zhu, 2013. "Set inferences and sensitivity analysis in semiparametric conditionally identified models," CeMMAP working papers CWP55/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    13. Michael A. Clemens & Claudio Montenegro & Lant Pritchett, 2016. "Bounding the Price Equivalent of Migration Barriers," Growth Lab Working Papers 67, Harvard's Growth Lab.
    14. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    15. Christelis, Dimitris & Messina, Julián, 2019. "Partial Identification of Population Average and Quantile Treatment Effects in Observational Data under Sample Selection," IDB Publications (Working Papers) 9520, Inter-American Development Bank.
    16. Bryan S. Graham & Jinyong Hahn & Alexandre Poirier & James L. Powell, 2015. "Quantile Regression with Panel Data," NBER Working Papers 21034, National Bureau of Economic Research, Inc.
    17. Ahrsjö, Ulrika & Niknami, Susan & Palme, Mårten, 2021. "Wage Inequality, Selection and the Evolution of the Gender Earnings Gap in Sweden," Research Papers in Economics 2021:3, Stockholm University, Department of Economics.
    18. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2005. "Trends in U. S. Wage Inequality: Re-Assessing the Revisionists," Harvard Institute of Economic Research Working Papers 2095, Harvard - Institute of Economic Research.
    19. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    20. Richard Blundell & James P. Ziliak & Hugo Lopez, 2023. "Labour market inequality and the changing life cycle profile of male and female wages," IFS Working Papers W23/16, Institute for Fiscal Studies.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • J3 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:quante:v:4:y:2013:i:2:p:231-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.