Model identification for infinite variance autoregressive processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2012.08.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gallagher, Colin M., 2001. "A method for fitting stable autoregressive models using the autocovariation function," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 381-390, July.
- Shiqing Ling, 2005. "Self‐weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393, June.
- Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
- Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
- Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
- Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Preve, Daniel, 2015.
"Linear programming-based estimators in nonnegative autoregression,"
Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 225-234.
- Daniel Preve, "undated". "Linear programming-based estimators in nonnegative autoregression," GRU Working Paper Series GRU_2016_001, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
- Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org, revised Nov 2022.
- She, Rui & Ling, Shiqing, 2020. "Inference in heavy-tailed vector error correction models," Journal of Econometrics, Elsevier, vol. 214(2), pages 433-450.
- Christis Katsouris, 2023. "Structural Analysis of Vector Autoregressive Models," Papers 2312.06402, arXiv.org, revised Feb 2024.
- Mikosch, Thomas & de Vries, Casper G., 2013. "Heavy tails of OLS," Journal of Econometrics, Elsevier, vol. 172(2), pages 205-221.
- Kindop, Igor, 2021. "Ubiquitous multimodality in mixed causal-noncausal processes," MPRA Paper 109594, University Library of Munich, Germany, revised 04 Sep 2021.
- Gourieroux, Christian & Jasiak, Joann, 2017. "Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation," Journal of Econometrics, Elsevier, vol. 200(1), pages 118-134.
- Fries, Sébastien & Zakoian, Jean-Michel, 2019.
"Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles,"
Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
- Fries, Sébastien & Zakoian, Jean-Michel, 2017. "Mixed Causal-Noncausal AR Processes and the Modelling of Explosive Bubbles," MPRA Paper 81345, University Library of Munich, Germany.
- Amit Shelef & Edna Schechtman, 2019. "A Gini-based time series analysis and test for reversibility," Statistical Papers, Springer, vol. 60(3), pages 687-716, June.
- Gourieroux, Christian & Jasiak, Joann, 2018. "Misspecification of noncausal order in autoregressive processes," Journal of Econometrics, Elsevier, vol. 205(1), pages 226-248.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gourieroux, Christian & Jasiak, Joann, 2018. "Misspecification of noncausal order in autoregressive processes," Journal of Econometrics, Elsevier, vol. 205(1), pages 226-248.
- Bouhaddioui, Chafik & Ghoudi, Kilani, 2012. "Empirical processes for infinite variance autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 319-335.
- Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
- Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
- Alain Hecq & Joao Victor Issler & Sean Telg, 2020.
"Mixed causal–noncausal autoregressions with exogenous regressors,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 328-343, April.
- Hecq, Alain & Issler, João Victor & Telg, Sean, 2019. "Mixed causal-noncausal autoregressions with exogenous regressors," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 810, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org, revised Nov 2022.
- Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
- Pentti Saikkonen & Rickard Sandberg, 2016.
"Testing for a Unit Root in Noncausal Autoregressive Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
- Saikkonen, Pentti & Sandberg, Rickard, 2013. "Testing for a unit root in noncausal autoregressive models," Bank of Finland Research Discussion Papers 26/2013, Bank of Finland.
- Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
- Lanne Markku, 2015.
"Noncausality and inflation persistence,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
- Markku Lanne, 2013. "Noncausality and Inflation Persistence," Discussion Papers of DIW Berlin 1286, DIW Berlin, German Institute for Economic Research.
- Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017.
"Identification and estimation of non-Gaussian structural vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
- Markku Lanne & Mika Meitz & Pentti Saikkonen, 2015. "Identification and estimation of non-Gaussian structural vector autoregressions," CREATES Research Papers 2015-16, Department of Economics and Business Economics, Aarhus University.
- D. M. Mahinda Samarakoon & Keith Knight, 2009. "A Note on Unit Root Tests with Infinite Variance Noise," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 314-334.
- Lanne, Markku & Saikkonen, Pentti, 2008.
"Modeling Expectations with Noncausal Autoregressions,"
MPRA Paper
8411, University Library of Munich, Germany.
- Markku Lanne & Pentti Saikkonen, 2008. "Modeling Expectations with Noncausal Autoregressions," Economics Working Papers ECO2008/20, European University Institute.
- Kindop, Igor, 2021. "Ubiquitous multimodality in mixed causal-noncausal processes," MPRA Paper 109594, University Library of Munich, Germany, revised 04 Sep 2021.
- Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020.
"Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
- Frédérique BEC & Heino BOHN NIELSEN & Sarra SAÏDI, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Working Papers 2019-09, Center for Research in Economics and Statistics.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing [Modèles auto-régressifs non-causaux mixtes: Problèmes de bimodalité pour l'estimation et le test de r," Working Papers hal-02175760, HAL.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," THEMA Working Papers 2019-07, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Lanne, Markku & Saikkonen, Pentti, 2013.
"Noncausal Vector Autoregression,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
- Lanne, Markku & Saikkonen, Pentti, 2009. "Noncausal vector autoregression," Research Discussion Papers 18/2009, Bank of Finland.
- Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal Vector Autoregression," MPRA Paper 23717, University Library of Munich, Germany.
- Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2012.
"Testing for predictability in a noninvertible ARMA model,"
MPRA Paper
37151, University Library of Munich, Germany.
- Markku Lanne & Mika Meitz & Pentti Saikkonen, 2012. "Testing for Predictability in a Noninvertible ARMA Model," Koç University-TUSIAD Economic Research Forum Working Papers 1225, Koc University-TUSIAD Economic Research Forum.
- Yuya Sasaki & Yulong Wang, 2020. "Testing Finite Moment Conditions for the Consistency and the Root-N Asymptotic Normality of the GMM and M Estimators," Papers 2006.02541, arXiv.org, revised Sep 2020.
- Nannan Ma & Hailin Sang & Guangyu Yang, 2023. "Least absolute deviation estimation for AR(1) processes with roots close to unity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 799-832, October.
More about this item
Keywords
Akaike’s information criterion; All-pass models; Autoregressive processes; Infinite variance; Noncausal;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:172:y:2013:i:2:p:222-234. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.