IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v25y1998i1p211-224.html
   My bibliography  Save this article

Efficient Estimation of a Distribution Function under Quadrant Dependence

Author

Listed:
  • Zongwu Cai
  • George G. Roussas

Abstract

LetX1,X2, ..., be real‐valued random variables forming a strictly stationary sequence, and satisfying the basic requirement of being either pairwise positively quadrant dependent or pairwise negatively quadrant dependent. LetF^ be the marginal distribution function of theXips, which is estimated by the empirical distribution functionFn and also by a smooth kernel‐type estimateFn, by means of the segmentX1, ...,Xn. These estimates are compared on the basis of their mean squared errors (MSE). The main results of this paper are the following. Under certain regularity conditions, the optimal bandwidth (in the MSE sense) is determined, and is found to be the same as that in the independent identically distributed case. It is also shown thatn MSE(Fn(t)) andnMSE (F^n(t)) tend to the same constant, asn→∞ so that one can not discriminate be tween the two estimates on the basis of the MSE. Next, ifi(n) = min {k∈{1, 2, ...}; MSE (Fk(t)) ≤ MSE (Fn(t))}, then it is proved thati(n)/n tends to 1, asn→∞. Thus, once again, one can not choose one estimate over the other in terms of their asymptotic relative efficiency. If, however, the squared bias ofF^n(t) tends to 0 sufficiently fast, or equivalently, the bandwidthhn satisfies the requirement thatnh3n→ 0, asn→∞, it is shown that, for a suitable choice of the kernel, (i(n) −n)/(nhn) tends to a positive number, asn→∞ It follows that the deficiency ofFn(t) with respect toF^n(t),i(n) −n, is substantial, and, actually, tends to ∞, asn→∞. In terms of deficiency, the smooth estimateF^n(t) is preferable to the empirical distribution functionFn(t)

Suggested Citation

  • Zongwu Cai & George G. Roussas, 1998. "Efficient Estimation of a Distribution Function under Quadrant Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 211-224, March.
  • Handle: RePEc:bla:scjsta:v:25:y:1998:i:1:p:211-224
    DOI: 10.1111/1467-9469.00098
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00098
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roussas, George G., 2000. "Asymptotic normality of the kernel estimate of a probability density function under association," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 1-12, October.
    2. repec:wyi:journl:002095 is not listed on IDEAS
    3. Alevizos, Filippos & Bagkavos, Dimitrios & Ioannides, Dimitrios, 2019. "Efficient estimation of a distribution function based on censored data," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 359-364.
    4. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:25:y:1998:i:1:p:211-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.