IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v118y2004i1-2p219-246.html
   My bibliography  Save this article

Nonlinear instrumental variable estimation of an autoregression

Author

Listed:
  • Phillips, Peter C. B.
  • Park, Joon Y.
  • Chang, Yoosoon

Abstract

Instrumental variable (IV) estimation methods that allow for certain nonlinear functions of the data as instruments are studied. The context of the discussion is the simple unit root model where certain advantages to the use of nonlinear instruments are revealed. In particular, certain classes of IV estimators and associated t-tests are shown to have simpler (standard) limit theory in contrast to the least squares estimator, providing an opportunity for the study of optimal estimation in certain IV classes and furnishing tests and confidence intervals that allow for unit root and stationary alternatives. The Cauchy estimator studied in recent work by So and Shin (1999) is shown to have such an optimality property in the class of certain IV procedures with bounded instruments.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Phillips, Peter C. B. & Park, Joon Y. & Chang, Yoosoon, 2004. "Nonlinear instrumental variable estimation of an autoregression," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 219-246.
  • Handle: RePEc:eee:econom:v:118:y:2004:i:1-2:p:219-246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(03)00141-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moon, Hyungsik R. & Phillips, Peter C.B., 2000. "Estimation Of Autoregressive Roots Near Unity Using Panel Data," Econometric Theory, Cambridge University Press, vol. 16(6), pages 927-997, December.
    2. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    3. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    4. So, Beong Soo & Shin, Dong Wan, 1999. "Cauchy Estimators For Autoregressive Processes With Applications To Unit Root Tests And Confidence Intervals," Econometric Theory, Cambridge University Press, vol. 15(2), pages 165-176, April.
    5. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    6. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Chang Sik & Kim, In-Moo, 2008. "Nonlinear regression for unit root models with autoregressive errors," Economics Letters, Elsevier, vol. 100(3), pages 326-329, September.
    2. Park, Joon, 2003. "Nonstationary Nonlinearity: An Outlook for New Opportunities," Working Papers 2003-05, Rice University, Department of Economics.
    3. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    4. Park, Joon, 2003. "Strong Approximations for Nonlinear Transformations of Integrated Time Series," Working Papers 2003-18, Rice University, Department of Economics.
    5. Chang, Yoosoon, 2012. "Taking a new contour: A novel approach to panel unit root tests," Journal of Econometrics, Elsevier, vol. 169(1), pages 15-28.
    6. Chang, Yoosoon, 2002. "Nonlinear IV unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 110(2), pages 261-292, October.
    7. Matei Demetrescu & Christoph Hanck, 2016. "Robust Inference for Near-Unit Root Processes with Time-Varying Error Variances," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 751-781, May.
    8. Meng, Ming & Lee, Hyejin & Cho, Myeong Hyeon & Lee, Junsoo, 2013. "Impacts of the initial observation on unit root tests using recursive demeaning and detrending procedures," Economics Letters, Elsevier, vol. 120(2), pages 195-199.
    9. Kyung So Im & Junsoo Lee & Vladimir Arcabic & Mansik Hur, 2018. "DF-IV Unit Root Tests Using Stationary Instrument Variables," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 7(1), pages 1-1.
    10. Chevillon, Guillaume & Mavroeidis, Sophocles & Zhan, Zhaoguo, 2016. "Robust inference in structural VARs with long-run restrictions," ESSEC Working Papers WP1702, ESSEC Research Center, ESSEC Business School.
    11. Chi‐Young Choi & Nelson C. Mark & Donggyu Sul, 2010. "Bias Reduction in Dynamic Panel Data Models by Common Recursive Mean Adjustment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(5), pages 567-599, October.
    12. Matei Demetrescu & Christoph Hanck & Adina I. Tarcolea, 2014. "Iv-Based Cointegration Testing In Dependent Panels With Time-Varying Variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 393-406, August.
    13. Chang, Yoosoon, 2003. "Nonlinear IV Panel Unit Root Tests," Working Papers 2003-06, Rice University, Department of Economics.
    14. Lee, Hyejin & Meng, Ming & Lee, Junsoo, 2012. "Performance of nonlinear instrumental variable unit root tests using recursive detrending methods," Economics Letters, Elsevier, vol. 117(1), pages 214-216.
    15. Kang, Wensheng, 2011. "Housing price dynamics and convergence in high-tech metropolitan economies," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(3), pages 283-291, June.
    16. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility Regressions with Fat Tails," TSE Working Papers 20-1097, Toulouse School of Economics (TSE).
    17. Miller J. Isaac, 2010. "A Nonlinear IV Likelihood-Based Rank Test for Multivariate Time Series and Long Panels," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-38, September.
    18. Demetrescu Matei, 2009. "Panel Unit Root Testing with Nonlinear Instruments for Infinite-Order Autoregressive Processes," Journal of Time Series Econometrics, De Gruyter, vol. 1(2), pages 1-30, December.
    19. Matei Demetrescu & Christoph Hanck, 2013. "Nonlinear IV panel unit root testing under structural breaks in the error variance," Statistical Papers, Springer, vol. 54(4), pages 1043-1066, November.
    20. Rodrigues, Paulo M.M., 2006. "Properties of recursive trend-adjusted unit root tests," Economics Letters, Elsevier, vol. 91(3), pages 413-419, June.
    21. Jihyun Kim & Nour Meddahi, 2020. "Volatility Regressions with Fat Tails," Post-Print hal-03142647, HAL.
    22. Ho, Tsung-wu, 2008. "Testing seasonal mean-reversion in the real exchange rates: An application of nonlinear IV estimator," Economics Letters, Elsevier, vol. 99(2), pages 314-316, May.
    23. Kuzin, Vladimir, 2005. "Recursive demeaning and deterministic seasonality," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 195-204, May.
    24. Tsung-wu Ho, 2009. "The inflation rates may accelerate after all: panel evidence from 19 OECD economies," Empirical Economics, Springer, vol. 36(1), pages 55-64, February.
    25. Neil Shephard, 2020. "An estimator for predictive regression: reliable inference for financial economics," Papers 2008.06130, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    2. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    3. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    4. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    5. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    6. Youngsoo Bae & Robert M. de Jong, 2007. "Money demand function estimation by nonlinear cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 767-793.
    7. Chung, Heetaik & Park, Joon Y., 2007. "Nonstationary nonlinear heteroskedasticity in regression," Journal of Econometrics, Elsevier, vol. 137(1), pages 230-259, March.
    8. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    9. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    10. Marmer, Vadim, 2008. "Nonlinearity, nonstationarity, and spurious forecasts," Journal of Econometrics, Elsevier, vol. 142(1), pages 1-27, January.
    11. Wagner, Martin, 2008. "The carbon Kuznets curve: A cloudy picture emitted by bad econometrics?," Resource and Energy Economics, Elsevier, vol. 30(3), pages 388-408, August.
    12. Stypka, Oliver & Wagner, Martin & Grabarczyk, Peter & Kawka, Rafael, 2017. "The Asymptotic Validity of "Standard" Fully Modified OLS Estimation and Inference in Cointegrating Polynomial Regressions," Economics Series 333, Institute for Advanced Studies.
    13. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
    14. Yicong Lin & Hanno Reuvers, 2019. "Efficient Estimation by Fully Modified GLS with an Application to the Environmental Kuznets Curve," Papers 1908.02552, arXiv.org, revised Aug 2020.
    15. Martin Wagner, 2023. "Residual-based cointegration and non-cointegration tests for cointegrating polynomial regressions," Empirical Economics, Springer, vol. 65(1), pages 1-31, July.
    16. Chang, Yoosoon & Park, Joon Y., 2003. "Index models with integrated time series," Journal of Econometrics, Elsevier, vol. 114(1), pages 73-106, May.
    17. Chang, Yoosoon & Nguyen, Chi Mai, 2012. "Residual based tests for cointegration in dependent panels," Journal of Econometrics, Elsevier, vol. 167(2), pages 504-520.
    18. Ayman Mnasri & Zouhair Mrabet & Mouyad Alsamara, 2023. "A new quadratic asymmetric error correction model: does size matter?," Empirical Economics, Springer, vol. 65(1), pages 33-64, July.
    19. repec:zbw:bofitp:2011_027 is not listed on IDEAS
    20. Wan Shin, Dong & Soo So, Beong, 2001. "Confidence intervals for the largest root of autoregressive models based on instrumental variable estimators," Economics Letters, Elsevier, vol. 71(2), pages 181-189, May.
    21. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:118:y:2004:i:1-2:p:219-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.