IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v108y2002i1p101-111.html
   My bibliography  Save this article

A note on the double k-class estimator in simultaneous equations

Author

Listed:
  • Gao, Chuanming
  • Lahiri, Kajal

Abstract

Dwivedi and Srivastava (1984, DS) studied the exact finite sample properties of Nagar’s (1962) double k-class estimator as continuous functions of its two characterizing scalars k1 and k2, and provided guidelines for their choice in empirical work. In this note we show that the empirical guidelines provided by DS are not entirely valid since they did not explore the complete range of the relevant parameter space in their numerical evaluations. We find that the optimal values of k2 leading to unbiased and mean squared error (MSE) minimizing double k-class estimators are not symmetric with respect to the sign of the product ρω12, where ρ is the correlation coefficient between the structural and reduced form errors, and w12 is the covariance between the unrestricted reduced form errors. Specifically, when ρω12 is positive,the optimal value of k2 is generally positive and greater than k1, which partly explains the superior performance of Zellner’s (1998) Bayesian Method of Moments (BMOM) and Extended MELO estimators reported in Tsurumi (1990).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gao, Chuanming & Lahiri, Kajal, 2002. "A note on the double k-class estimator in simultaneous equations," Journal of Econometrics, Elsevier, vol. 108(1), pages 101-111, May.
  • Handle: RePEc:eee:econom:v:108:y:2002:i:1:p:101-111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(01)00107-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mariano, Roberto S, 1982. "Analytical Small-Sample Distribution Theory in Econometrics: The Simultaneous-Equations Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(3), pages 503-533, October.
    2. Zellner, Arnold & Tobias, Justin, 2001. "Further Results on Bayesian Method of Moments Analysis of the Multiple Regression Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 121-140, February.
    3. Srivastava, V K, et al, 1980. "A Numerical Comparison of Exact, Large-Sample and Small Disturbance Approximations of Properties of k-Class Estimators," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 249-252, February.
    4. Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
    5. Dwivedi, T. D. & Srivastava, V. K., 1984. "Exact finite sample properties of double k-class estimators in simultaneous equations," Journal of Econometrics, Elsevier, vol. 25(3), pages 263-283, July.
    6. Sawa, Takamitsu, 1972. "Finite-Sample Properties of the k-Class Estimators," Econometrica, Econometric Society, vol. 40(4), pages 653-680, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.
    2. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    3. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    4. Zellner, Arnold, 2007. "Some aspects of the history of Bayesian information processing," Journal of Econometrics, Elsevier, vol. 138(2), pages 388-404, June.
    5. Scott Atkinson & Jeffrey Dorfman, 2005. "Multiple Comparisons with the Best: Bayesian Precision Measures of Efficiency Rankings," Journal of Productivity Analysis, Springer, vol. 23(3), pages 359-382, July.
    6. Agee, Mark D. & Atkinson, Scott E. & Crocker, Thomas D. & Williams, Jonathan W., 2014. "Non-separable pollution control: Implications for a CO2 emissions cap and trade system," Resource and Energy Economics, Elsevier, vol. 36(1), pages 64-82.
    7. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    8. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    9. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    10. Zellner, Arnold, 2006. "S. James Press And Bayesian Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 10(5), pages 667-684, November.
    11. Zellner, Arnold, 2010. "Bayesian shrinkage estimates and forecasts of individual and total or aggregate outcomes," Economic Modelling, Elsevier, vol. 27(6), pages 1392-1397, November.
    12. Scott E. Atkinson & Jeffrey H. Dorfman, 2009. "Feasible estimation of firm-specific allocative inefficiency through Bayesian numerical methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 675-697.
    13. Hadri, Kaddour & Phillips, Garry D. A., 1999. "The accuracy of the higher order bias approximation for the 2SLS estimator," Economics Letters, Elsevier, vol. 62(2), pages 167-174, February.
    14. Zellner, Arnold, 1999. "Discussion of Papers Presented at 1999 ASSA Meeting in New York By (1) Foster and Whiteman, (2) Golan, Moretti and Perloff, and (3) LaFrance," CUDARE Working Papers 198675, University of California, Berkeley, Department of Agricultural and Resource Economics.
    15. Attanasio, Orazio & Low, Hamish & Sánchez-Marcos, Virginia & Levell, Peter, 2015. "Aggregating Elasticities: Intensive and Extensive Margins of Female Labour Supply," CEPR Discussion Papers 10732, C.E.P.R. Discussion Papers.
    16. Arnold Zellner, 2003. "Some Recent Developments in Econometric Inference," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 203-215.
    17. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-577, CIRJE, Faculty of Economics, University of Tokyo.
    18. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    19. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    20. Rodney W. Strachan & Herman K. van Dijk, 2014. "Divergent Priors and Well Behaved Bayes Factors," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 1-31, March.

    More about this item

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:108:y:2002:i:1:p:101-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.