IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v19y2021i1d10.1007_s40953-021-00261-z.html
   My bibliography  Save this article

Analytical Finite Sample Econometrics: From A. L. Nagar to Now

Author

Listed:
  • Yong Bao

    (Purdue University)

  • Aman Ullah

    (University of California)

Abstract

Professor A.L. Nagar was a world-renowned econometrician and an international authority on finite sample econometrics with many path-breaking papers on the statistical properties of econometric estimators and test statistics. His contributions to applied econometrics have been also widely recognized. Nagar’s 1959 Econometrica paper on the so-called k-class estimators, together with a later one in 1962 on the double-k-class estimators, provided a very general framework of bias and mean squared error approximations for a large class of estimators and had motivated researchers to study a wide variety of issues such as many and weak instruments for many decades to follow. This paper reviews Nagar’s seminal contributions to analytical finite sample econometrics by providing historical backgrounds, discussing extensions and generalization of Nagar’s approach, and suggesting future directions of this literature.

Suggested Citation

  • Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.
  • Handle: RePEc:spr:jqecon:v:19:y:2021:i:1:d:10.1007_s40953-021-00261-z
    DOI: 10.1007/s40953-021-00261-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40953-021-00261-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40953-021-00261-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yong Bao & Aman Ullah & Ru Zhang, 2014. "Moment Approximation for Least-Squares Estimator in First-Order Regression Models with Unit Root and Nonnormal Errors," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 65-92, Emerald Group Publishing Limited.
    2. Gubhinder Kundhi & Paul Rilstone, 2020. "Simplified Matrix Methods for Multivariate Edgeworth Expansions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 293-326, June.
    3. Lee, Tae-Hwy & Ullah, Aman & Wang, He, 2018. "The second-order bias of quantile estimators," Economics Letters, Elsevier, vol. 173(C), pages 143-147.
    4. Hillier, Grant & Kan, Raymond & Wang, Xiaolu, 2009. "Computationally Efficient Recursions For Top-Order Invariant Polynomials With Applications," Econometric Theory, Cambridge University Press, vol. 25(1), pages 211-242, February.
    5. Hashiguchi, Hiroki & Takayama, Nobuki & Takemura, Akimichi, 2018. "Distribution of the ratio of two Wishart matrices and cumulative probability evaluation by the holonomic gradient method," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 270-278.
    6. Srinivasan, T N, 1970. "Approximations to Finite Sample Moments of Estimators Whose Exact Sampling Distributions are Unknown," Econometrica, Econometric Society, vol. 38(3), pages 533-541, May.
    7. Maasoumi, Esfandiar & Phillips, Peter C. B., 1982. "On the behavior of inconsistent instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 183-201, August.
    8. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    9. Forchini, G., 2002. "The Exact Cumulative Distribution Function Of A Ratio Of Quadratic Forms In Normal Variables, With Application To The Ar(1) Model," Econometric Theory, Cambridge University Press, vol. 18(4), pages 823-852, August.
    10. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    11. Phillips, P C B, 1980. "The Exact Distribution of Instrumental Variable Estimators in an Equation Containing n + 1 Endogenous Variables," Econometrica, Econometric Society, vol. 48(4), pages 861-878, May.
    12. Hillier, Grant & Kan, Raymond & Wang, Xiaolu, 2014. "Generating Functions And Short Recursions, With Applications To The Moments Of Quadratic Forms In Noncentral Normal Vectors," Econometric Theory, Cambridge University Press, vol. 30(2), pages 436-473, April.
    13. Srivastava, V. K. & Maekawa, Koichi, 1995. "Efficiency properties of feasible generalized least squares estimators in SURE models under non-normal disturbances," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 99-121.
    14. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    15. Kinal, Terrence W, 1980. "The Existence of Moments of k-Class Estimators," Econometrica, Econometric Society, vol. 48(1), pages 241-249, January.
    16. Ullah, Aman & Nagar, A L, 1974. "The Exact Mean of the Two-Stage Least Squares Estimator of the Structural Parameters in an Equation Having Three Endogenous Variables," Econometrica, Econometric Society, vol. 42(4), pages 749-758, July.
    17. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    18. Rothenberg, Thomas J, 1984. "Approximate Normality of Generalized Least Squares Estimates," Econometrica, Econometric Society, vol. 52(4), pages 811-825, July.
    19. Bao, Yong, 2013. "Finite Sample Bias Of The Qmle In Spatial Autoregressive Models – Erratum," Econometric Theory, Cambridge University Press, vol. 29(1), pages 89-89, February.
    20. Kiviet, Jan F. & Phillips, Garry D.A., 1993. "Alternative Bias Approximations in Regressions with a Lagged-Dependent Variable," Econometric Theory, Cambridge University Press, vol. 9(1), pages 62-80, January.
    21. Sargan, J D, 1980. "Some Tests of Dynamic Specification for a Single Equation," Econometrica, Econometric Society, vol. 48(4), pages 879-897, May.
    22. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    23. Dwivedi, T. D. & Srivastava, V. K., 1984. "Exact finite sample properties of double k-class estimators in simultaneous equations," Journal of Econometrics, Elsevier, vol. 25(3), pages 263-283, July.
    24. Grigory Franguridi & Bulat Gafarov & Kaspar Wuthrich, 2020. "Bias correction for quantile regression estimators," Papers 2011.03073, arXiv.org, revised Nov 2024.
    25. Grant Hillier & Raymond Kan, 2021. "Moments of a Wishart Matrix," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 141-162, December.
    26. Yong Bao & Aman Ullah, 2009. "On skewness and kurtosis of econometric estimators," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 232-247, July.
    27. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    28. Aman Ullah & Yong Bao & Ru Zhang, 2014. "Moment Approximation for Unit Root Models with Nonnormal Errors," Working Papers 201401, University of California at Riverside, Department of Economics.
    29. Anderson, T W & Sawa, Takamitsu, 1973. "Distributions of Estimates of Coefficients of a Single Equation in a Simultaneous System and Their Asymptotic Expansions," Econometrica, Econometric Society, vol. 41(4), pages 683-714, July.
    30. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    31. Kadane, Joseph B, 1971. "Comparison of k-Class Estimators when the Disturbances are Small," Econometrica, Econometric Society, vol. 39(5), pages 723-737, September.
    32. Matthew Harding & Jerry Hausman & Christopher J. Palmer, 2016. "Finite Sample BIAS Corrected IV Estimation for Weak and Many Instruments," Advances in Econometrics, in: Essays in Honor of Aman Ullah, volume 36, pages 245-273, Emerald Group Publishing Limited.
    33. Phillips, Peter C B, 1977. "Approximations to Some Finite Sample Distributions Associated with a First-Order Stochastic Difference Equation," Econometrica, Econometric Society, vol. 45(2), pages 463-485, March.
    34. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    35. Bao, Yong, 2013. "Finite-Sample Bias Of The Qmle In Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 29(1), pages 68-88, February.
    36. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    37. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    38. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    39. Kundhi, Gubhinder & Rilstone, Paul, 2013. "Edgeworth And Saddlepoint Expansions For Nonlinear Estimators," Econometric Theory, Cambridge University Press, vol. 29(5), pages 1057-1078, October.
    40. Grant Hillier & Raymond Kan & Xiaolu Wang, 2008. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," CeMMAP working papers CWP14/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    41. Bao, Yong & Ullah, Aman, 2007. "Finite sample properties of maximum likelihood estimator in spatial models," Journal of Econometrics, Elsevier, vol. 137(2), pages 396-413, April.
    42. Sawa, Takamitsu, 1972. "Finite-Sample Properties of the k-Class Estimators," Econometrica, Econometric Society, vol. 40(4), pages 653-680, July.
    43. Phillips, Peter C B & Park, Joon Y, 1988. "On the Formulation of Wald Tests of Nonlinear Restrictions," Econometrica, Econometric Society, vol. 56(5), pages 1065-1083, September.
    44. Jan F. Kiviet & Garry D. A. Phillips, 2005. "Moment approximation for least-squares estimators in dynamic regression models with a unit root *," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 115-142, July.
    45. Mariano, Roberto S, 1982. "Analytical Small-Sample Distribution Theory in Econometrics: The Simultaneous-Equations Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(3), pages 503-533, October.
    46. Hillier, Grant H & Kinal, Terrence W & Srivastava, V K, 1984. "On the Moments of Ordinary Least Squares and Instrumental Variables Estimators in a General Structural Equation," Econometrica, Econometric Society, vol. 52(1), pages 185-202, January.
    47. Rilstone, Paul & Srivastava, V. K. & Ullah, Aman, 1996. "The second-order bias and mean squared error of nonlinear estimators," Journal of Econometrics, Elsevier, vol. 75(2), pages 369-395, December.
    48. Zhou, Qiankun & Yu, Jun, 2015. "Asymptotic theory for linear diffusions under alternative sampling schemes," Economics Letters, Elsevier, vol. 128(C), pages 1-5.
    49. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    50. Y. P. Gupta & Amanullah, 1970. "A note on the moments of the Wald's estimator," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 24(3), pages 109-123, September.
    51. Maasoumi, Esfandiar, 1978. "A Modified Stein-like Estimator for the Reduced Form Coefficients of Simultaneous Equations," Econometrica, Econometric Society, vol. 46(3), pages 695-703, May.
    52. Sargan, J D, 1975. "Gram-Charlier Approximations Applied to t Ratios of k-Class Estimators," Econometrica, Econometric Society, vol. 43(2), pages 327-346, March.
    53. Tõnu Kollo & Dietrich Von Rosen, 1998. "A Unified Approach to the Approximation of Multivariate Densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 93-109, March.
    54. Bao, Yong & Kan, Raymond, 2013. "On the moments of ratios of quadratic forms in normal random variables," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 229-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Bao & Aman Ullah, 2021. "The Special Issue in Honor of Anirudh Lal Nagar: An Introduction," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    2. Christopher L. Skeels & Frank Windmeijer, 2018. "On the Stock–Yogo Tables," Econometrics, MDPI, vol. 6(4), pages 1-23, November.
    3. Emma M. Iglesias & Garry D. A. Phillips, 2012. "Almost Unbiased Estimation in Simultaneous Equation Models With Strong and/or Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 505-520, June.
    4. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    5. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    6. Phillips, Garry D.A. & Liu-Evans, Gareth, 2016. "Approximating and reducing bias in 2SLS estimation of dynamic simultaneous equation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 734-762.
    7. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
    8. Rodrigo Alfaro, 2008. "Higher Order Properties of the Symmetricallr Normalized Instrumental Variable Estimator," Working Papers Central Bank of Chile 500, Central Bank of Chile.
    9. Aman Ullah & Yong Bao & Ru Zhang, 2014. "Moment Approximation for Unit Root Models with Nonnormal Errors," Working Papers 201401, University of California at Riverside, Department of Economics.
    10. Matthew C. Harding & Jerry Hausman & Christopher Palmer, 2015. "Finite sample bias corrected IV estimation for weak and many instruments," CeMMAP working papers CWP41/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Matthew C. Harding & Jerry Hausman & Christopher Palmer, 2015. "Finite sample bias corrected IV estimation for weak and many instruments," CeMMAP working papers 41/15, Institute for Fiscal Studies.
    12. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    13. Kyoo Il Kim, 2016. "Higher Order Bias Correcting Moment Equation for M-Estimation and Its Higher Order Efficiency," Econometrics, MDPI, vol. 4(4), pages 1-19, December.
    14. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    15. Gubhinder Kundhi & Paul Rilstone, 2020. "Simplified Matrix Methods for Multivariate Edgeworth Expansions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 293-326, June.
    16. Hillier, Grant & Kan, Raymond & Wang, Xiaolu, 2009. "Computationally Efficient Recursions For Top-Order Invariant Polynomials With Applications," Econometric Theory, Cambridge University Press, vol. 25(1), pages 211-242, February.
    17. Oberhelman, Dennis & Rao Kadiyala, K., 2000. "Asymptotic probability concentrations and finite sample properties of modified LIML estimators for equations with more than two endogenous variables," Journal of Econometrics, Elsevier, vol. 98(1), pages 163-185, September.
    18. Saman Banafti & Tae-Hwy Lee, 2022. "Inferential Theory for Granular Instrumental Variables in High Dimensions," Papers 2201.06605, arXiv.org, revised Sep 2023.
    19. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    20. Kiviet, Jan F. & Phillips, Garry D.A., 2014. "Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 424-448.

    More about this item

    Keywords

    Nagar; Finite sample econometrics; k-class estimators;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:19:y:2021:i:1:d:10.1007_s40953-021-00261-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.