IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024003041.html
   My bibliography  Save this article

How root-grafted trees form networks: Modeling network dynamics with pyNET

Author

Listed:
  • Wimmler, Marie-Christin
  • Berger, Uta

Abstract

Natural root grafting is a widespread phenomenon in woody plants. While previous studies have focused on the effects of reduced growth and resource exchange at the individual level, we lack an understanding of the collective behavior of groups of grafted trees and the networks they form. Here, we present pyNET, a mechanistic agent-based model designed to explore the emergence of root graft networks. We performed simulation experiments with different scenarios involving water scarcity and different cost-benefit dynamics. Costs denote the resources required to form root grafts, while benefits denote the water redistributed among trees. Our model successfully replicates observed patterns linking structural variables to network characteristics. Specifically, we were able to reproduce observed characteristics such as grafting frequency and mean group size. In particular, we find that while the network structure is naturally strongly influenced by the size of the root system, the time and resources allocated to grafting are also critical factors. pyNET serves as a valuable tool for exploring the formation of root grafting networks under diverse environmental conditions and understanding their impact on resource competition. Our study supports theory development on the subject and hopefully stimulates further empirical studies.

Suggested Citation

  • Wimmler, Marie-Christin & Berger, Uta, 2024. "How root-grafted trees form networks: Modeling network dynamics with pyNET," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024003041
    DOI: 10.1016/j.ecolmodel.2024.110916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024003041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.