A new mechanistic theory of self-thinning: Adaptive behaviour of plants explains the shape and slope of self-thinning trajectories
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2018.10.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Brian J. Enquist & James H. Brown & Geoffrey B. West, 1998. "Allometric scaling of plant energetics and population density," Nature, Nature, vol. 395(6698), pages 163-165, September.
- Peters, Ronny & Vovides, Alejandra G. & Luna, Soledad & Grüters, Uwe & Berger, Uta, 2014. "Changes in allometric relations of mangrove trees due to resource availability – A new mechanistic modelling approach," Ecological Modelling, Elsevier, vol. 283(C), pages 53-61.
- Brian J. Enquist & James H. Brown & Geoffrey B. West, 1998. "Allometric Scaling of Plant Energetics and Population Density," Working Papers 98-11-104, Santa Fe Institute.
- Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms," Working Papers 99-07-047, Santa Fe Institute.
- Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bathmann, Jasper & Peters, Ronny & Naumov, Dmitri & Fischer, Thomas & Berger, Uta & Walther, Marc, 2020. "The MANgrove–GroundwAter feedback model (MANGA) – Describing belowground competition based on first principles," Ecological Modelling, Elsevier, vol. 420(C).
- Kaitaniemi, Pekka & Lintunen, Anna & Sievänen, Risto, 2020. "Power-law estimation of branch growth," Ecological Modelling, Elsevier, vol. 416(C).
- Ma, Ping & Han, Xiao-Hui & Lin, Yue & Moore, John & Guo, Yao-Xin & Yue, Ming, 2019. "Exploring the relative importance of biotic and abiotic factors that alter the self-thinning rule: Insights from individual-based modelling and machine-learning," Ecological Modelling, Elsevier, vol. 397(C), pages 16-24.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
- Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
- Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
- Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
- Jiang Zhang & Lingfei Wu, 2013. "Allometry and Dissipation of Ecological Flow Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
- Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.
- Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
- Wolpert, David & Harper, Kyle, 2024. "The computational power of a human society: a new model of social evolution," SocArXiv qj83z, Center for Open Science.
- David H. Wolpert & Kyle Harper, 2024. "The computational power of a human society: a new model of social evolution," Papers 2408.08861, arXiv.org.
- Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
- Ogawa, Kazuharu, 2009. "Mathematical analysis of change in forest carbon use efficiency with stand development: A case study on Abies veitchii Lindl," Ecological Modelling, Elsevier, vol. 220(11), pages 1419-1424.
- Harris, Lora A. & Brush, Mark J., 2012. "Bridging the gap between empirical and mechanistic models of aquatic primary production with the metabolic theory of ecology: An example from estuarine ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 83-89.
- Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
- He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
- Brolly, Matthew & Woodhouse, Iain H., 2012. "A “Matchstick Model” of microwave backscatter from a forest," Ecological Modelling, Elsevier, vol. 237, pages 74-87.
- Dalgaard, Carl-Johan & Strulik, Holger, 2011. "Energy distribution and economic growth," Resource and Energy Economics, Elsevier, vol. 33(4), pages 782-797.
- Husmann, Kai & Möhring, Bernhard, 2017. "Modelling the economically viable wood in the crown of European beech trees," Forest Policy and Economics, Elsevier, vol. 78(C), pages 67-77.
- Barnes, Belinda & Mokany, Karel & Roderick, Michael, 2007. "Allocation within a generic scaling framework," Ecological Modelling, Elsevier, vol. 201(2), pages 223-232.
- He, Ji-Huan, 2006. "An allometric scaling law between gray matter and white matter of cerebral cortex," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 864-867.
- Xinjing Ding & Peixi Su & Zijuan Zhou & Rui Shi, 2019. "Belowground Bud Bank Distribution and Aboveground Community Characteristics along Different Moisture Gradients of Alpine Meadow in the Zoige Plateau, China," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
More about this item
Keywords
Self-thinning; Biomass-density relationship; Scaling exponent; Individual-based modelling; Allometric plasticity; Resource limitation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:390:y:2018:i:c:p:1-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.