IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002242.html
   My bibliography  Save this article

Towards a comprehensive framework for providing management advice from statistical inference using population dynamics models

Author

Listed:
  • Maunder, Mark N.

Abstract

There has been substantial progress in fitting population dynamics models to data and this has greatly improved management advice in a variety of situations from exploitation to conservation. One of the major developments has been integrated analysis where multiple diverse data sets are fit simultaneously within the same model. However, issues such as model misspecification, unmodelled process variation, and data weighting make integrated analysis problematic. Here I provide a personal perspective on a framework for Model Development (FMD) based on the Center for the Advancement of Population Assessment Methodology (CAPAM) workshops and special issues, my own research, and other information. The FMD is motivated by fisheries stock assessment but is relevant to any form of population dynamics modelling or modelling in general. I provide an outline of the modeling framework and discuss the important topic of data weighting. The FMD starts with one or more conceptual models which are implemented as population dynamics models fit to data using a comprehensively researched Good Practices Guide (GPG). The models are evaluated, improved, and selected, based on a diagnostic “expert” system that has been rigorously developed using a comprehensive simulation analysis. The final models that are accepted in the ensemble are equally weighted (until the data weighting issue is fully resolved) to provide management advice. I also outline necessary future research.

Suggested Citation

  • Maunder, Mark N., 2024. "Towards a comprehensive framework for providing management advice from statistical inference using population dynamics models," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002242
    DOI: 10.1016/j.ecolmodel.2024.110836
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.