IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v490y2024ics0304380024000383.html
   My bibliography  Save this article

Ways to reduce or avoid juvenile-driven cycles in individual-based population models

Author

Listed:
  • Kooijman, S.A.L.M.

Abstract

Feeding being linked to surface area and maintenance to volume causes juvenile-driven cycles in individual-based population models (IBM’s). This combination of traits induces self-synchronisation of individuals: at some low food level, small individuals can still grow, but large ones cannot. Since Dynamic Energy Budget (DEB) models have these features, which are well-tested for individuals in the Add_my_Pet collection, DEB-based population models have such juvenile-driven cycles in simple homogeneous reactors. These cycles are, however, not seen in practice. This paper explores ways to reduce or avoid such cycles in a realistic way, keeping the model as simple as possible, and comes with recommendations. Some of the fixes also repair related artefacts of too simple population models, such as competitive exclusion, the paradox of enrichment and merry-go-around. A size-dependent hazard, which is essential for species with many small offspring, and details on nutrition are unavoidable in realistic models for physiologically structured population dynamics.

Suggested Citation

  • Kooijman, S.A.L.M., 2024. "Ways to reduce or avoid juvenile-driven cycles in individual-based population models," Ecological Modelling, Elsevier, vol. 490(C).
  • Handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s0304380024000383
    DOI: 10.1016/j.ecolmodel.2024.110649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kooijman, Sebastiaan A.L.M. & Lika, Konstadia & Augustine, Starrlight & Marn, Nina & Kooi, Bob W., 2020. "The energetic basis of population growth in animal kingdom," Ecological Modelling, Elsevier, vol. 428(C).
    2. De Roos, André M. & Schellekens, Tim & Van Kooten, Tobias & Van De Wolfshaar, Karen & Claessen, David & Persson, Lennart, 2008. "Simplifying a physiologically structured population model to a stage-structured biomass model," Theoretical Population Biology, Elsevier, vol. 73(1), pages 47-62.
    3. Jef Huisman & Franz J. Weissing, 1999. "Biodiversity of plankton by species oscillations and chaos," Nature, Nature, vol. 402(6760), pages 407-410, November.
    4. Lika, K. & Kooijman, S.A.L.M., 2024. "The metabolic interpretation of the von Bertalanffy growth rate," Ecological Modelling, Elsevier, vol. 488(C).
    5. Nisbet, Roger M. & Martin, Benjamin T. & de Roos, Andre M., 2016. "Integrating ecological insight derived from individual-based simulations and physiologically structured population models," Ecological Modelling, Elsevier, vol. 326(C), pages 101-112.
    6. Jager, Tjalling, 2020. "Revisiting simplified DEBtox models for analysing ecotoxicity data," Ecological Modelling, Elsevier, vol. 416(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashleigh, Brenda & DeAngelis, Donald L., 2007. "Conditions for coexistence of freshwater mussel species via partitioning of fish host resources," Ecological Modelling, Elsevier, vol. 201(2), pages 171-178.
    2. Sun, Zepeng & de Roos, André M., 2015. "Alternative stable states in a stage-structured consumer–resource biomass model with niche shift and seasonal reproduction," Theoretical Population Biology, Elsevier, vol. 103(C), pages 60-70.
    3. Lika, Konstadia & Augustine, Starrlight & Kooijman, Sebastiaan A.L.M., 2020. "The use of augmented loss functions for estimating dynamic energy budget parameters," Ecological Modelling, Elsevier, vol. 428(C).
    4. Pavão, D.C. & Elias, R.B. & Silva, L., 2019. "Comparison of discrete and continuum community models: Insights from numerical ecology and Bayesian methods applied to Azorean plant communities," Ecological Modelling, Elsevier, vol. 402(C), pages 93-106.
    5. Sergey Bartsev & Andrey Degermendzhi, 2023. "The Evolutionary Mechanism of Formation of Biosphere Closure," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    6. Marten Scheffer & Remi Vergnon & Egbert H van Nes & Jan G M Cuppen & Edwin T H M Peeters & Remko Leijs & Anders N Nilsson, 2015. "The Evolution of Functionally Redundant Species; Evidence from Beetles," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    7. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    8. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    9. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    10. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    11. López-Ruiz, Ricardo & Fournier-Prunaret, Danièle, 2009. "Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 334-347.
    12. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Mulderij, Gabi & Van Nes, Egbert H. & Van Donk, Ellen, 2007. "Macrophyte–phytoplankton interactions: The relative importance of allelopathy versus other factors," Ecological Modelling, Elsevier, vol. 204(1), pages 85-92.
    14. Sudakov, Ivan & Vakulenko, Sergey A. & Bruun, John T., 2022. "Stochastic physics of species extinctions in a large population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    15. Malay Banerjee & Nayana Mukherjee & Vitaly Volpert, 2018. "Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey," Mathematics, MDPI, vol. 6(3), pages 1-13, March.
    16. Cagle, Sierra E. & Roelke, Daniel L., 2024. "Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism," Ecological Modelling, Elsevier, vol. 492(C).
    17. Kooijman, Sebastiaan A.L.M., 2020. "The standard dynamic energy budget model has no plausible alternatives," Ecological Modelling, Elsevier, vol. 428(C).
    18. Silverman, B. David, 2007. "Modeling the effect of growth rate and survivability trade-offs on species coexistence and spatial topology at a traveling invasive wave-front," Ecological Modelling, Elsevier, vol. 202(3), pages 454-464.
    19. Šajna, Nina & Kušar, Primož, 2014. "Modeling species fitness in competitive environments," Ecological Modelling, Elsevier, vol. 275(C), pages 31-36.
    20. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s0304380024000383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.