IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v103y2015icp60-70.html
   My bibliography  Save this article

Alternative stable states in a stage-structured consumer–resource biomass model with niche shift and seasonal reproduction

Author

Listed:
  • Sun, Zepeng
  • de Roos, André M.

Abstract

We formulate and analyze a stage-structured consumer–resource biomass model, in which consumers reproduce in a pulsed event at the beginning of a growing season and furthermore go through a niche shift during their life history. We show that the resulting semi-discrete model can exhibit two stable states that can be characterized as a development-controlled state and a reproduction-controlled state. Varying resource availabilities and varying the extent of the niche shift determines whether juveniles or adults are more limited by their resource(s) and can lead to switches between the alternative stable states. Furthermore, we quantify the persistence of the consumer population and the occurrence of the two alternative stable states as a function of resource availabilities and extent of the niche shift. All the results show that irrespective of the type of reproduction of the consumers (continuous or seasonal), the stage-structured model will exhibit alternative stable states as long as development of the juvenile stage and reproduction of the adult stage are both resource-dependent.

Suggested Citation

  • Sun, Zepeng & de Roos, André M., 2015. "Alternative stable states in a stage-structured consumer–resource biomass model with niche shift and seasonal reproduction," Theoretical Population Biology, Elsevier, vol. 103(C), pages 60-70.
  • Handle: RePEc:eee:thpobi:v:103:y:2015:i:c:p:60-70
    DOI: 10.1016/j.tpb.2015.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915000398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Roos, André M. & Schellekens, Tim & Van Kooten, Tobias & Van De Wolfshaar, Karen & Claessen, David & Persson, Lennart, 2008. "Simplifying a physiologically structured population model to a stage-structured biomass model," Theoretical Population Biology, Elsevier, vol. 73(1), pages 47-62.
    2. Zhou, Can & Fujiwara, Masami & Grant, William E., 2013. "Dynamics of a predator–prey interaction with seasonal reproduction and continuous predation," Ecological Modelling, Elsevier, vol. 268(C), pages 25-36.
    3. Guill, Christian, 2009. "Alternative dynamical states in stage-structured consumer populations," Theoretical Population Biology, Elsevier, vol. 76(3), pages 168-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    2. Fujiwara, Masami, 2016. "Incorporating demographic diversity into food web models: Effects on community structure and dynamics," Ecological Modelling, Elsevier, vol. 322(C), pages 10-18.
    3. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    4. Rao, B. Veena Shankara Narayana & Walton, J.R. & Fujiwara, M., 2022. "A mathematical model to investigate the effects of fishing zone configurations and mass dependent rates on biomass yield: Application to brown shrimp in Gulf of Mexico," Ecological Modelling, Elsevier, vol. 463(C).
    5. Verdy, Ariane, 2010. "Modulation of predator–prey interactions by the Allee effect," Ecological Modelling, Elsevier, vol. 221(8), pages 1098-1107.
    6. Kooijman, S.A.L.M., 2024. "Ways to reduce or avoid juvenile-driven cycles in individual-based population models," Ecological Modelling, Elsevier, vol. 490(C).
    7. Guill, Christian, 2009. "Alternative dynamical states in stage-structured consumer populations," Theoretical Population Biology, Elsevier, vol. 76(3), pages 168-178.
    8. Kvamsdal, Sturla & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2017. "A bridge between continuous and discrete-time bioeconomic models: Seasonality in fisheries," Ecological Modelling, Elsevier, vol. 364(C), pages 124-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:103:y:2015:i:c:p:60-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.