IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v428y2020ics0304380020301782.html
   My bibliography  Save this article

The standard dynamic energy budget model has no plausible alternatives

Author

Listed:
  • Kooijman, Sebastiaan A.L.M.

Abstract

During its 40 years of development, the assumptions of the Dynamic Energy Budget (deb) theory for metabolic organisation turned out hard to replace. To understand this, a reasoning is here presented for why its standard model has no alternatives with a comparable level of simplicity and will never have them. Energy and mass conservation rules are essential to quantify the eco-physiological development of an individual organism thermodynamically. These rules strongly constrain the mathematical modelling of this development. In combination with consistency with a small set of stylised empirical facts, the freedom of modelling the skeleton of the model is reduced to a single one: the standard deb model. This skeleton can, however, be extended in many different ways to capture particular ‘details’. The key-message of this paper is that the more simple metabolic models become, the more constraining are consistency conditions.

Suggested Citation

  • Kooijman, Sebastiaan A.L.M., 2020. "The standard dynamic energy budget model has no plausible alternatives," Ecological Modelling, Elsevier, vol. 428(C).
  • Handle: RePEc:eee:ecomod:v:428:y:2020:i:c:s0304380020301782
    DOI: 10.1016/j.ecolmodel.2020.109106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020301782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kooijman, Sebastiaan A.L.M. & Lika, Konstadia & Augustine, Starrlight & Marn, Nina & Kooi, Bob W., 2020. "The energetic basis of population growth in animal kingdom," Ecological Modelling, Elsevier, vol. 428(C).
    2. Lika, Konstadia & Augustine, Starrlight & Kooijman, Sebastiaan A.L.M., 2020. "The use of augmented loss functions for estimating dynamic energy budget parameters," Ecological Modelling, Elsevier, vol. 428(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kooijman, Sebastiaan A.L.M. & Lika, Konstadia & Augustine, Starrlight & Marn, Nina & Kooi, Bob W., 2020. "The energetic basis of population growth in animal kingdom," Ecological Modelling, Elsevier, vol. 428(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kooijman, Sebastiaan A.L.M., 2020. "The comparative energetics of petrels and penguins," Ecological Modelling, Elsevier, vol. 427(C).
    2. Lika, Konstadia & Augustine, Starrlight & Kooijman, Sebastiaan A.L.M., 2020. "The use of augmented loss functions for estimating dynamic energy budget parameters," Ecological Modelling, Elsevier, vol. 428(C).
    3. Kooi, B.W. & Kooijman, S.A.L.M., 2020. "A cohort projection method to follow deb-structured populations with periodic, synchronized and iteroparous reproduction," Ecological Modelling, Elsevier, vol. 436(C).
    4. Sadoul, Bastien & Geffroy, Benjamin & Lallement, Stephane & Kearney, Michael, 2020. "Multiple working hypotheses for hyperallometric reproduction in fishes under metabolic theory," Ecological Modelling, Elsevier, vol. 433(C).
    5. Augustine, Starrlight & Lika, Konstadia & Kooijman, Sebastiaan A.L.M., 2020. "Comparing loss functions and interval estimates for survival data," Ecological Modelling, Elsevier, vol. 430(C).
    6. Matyja, Konrad, 2023. "Standard dynamic energy budget model parameter sensitivity," Ecological Modelling, Elsevier, vol. 478(C).
    7. Lika, K. & Kooijman, S.A.L.M., 2024. "The metabolic interpretation of the von Bertalanffy growth rate," Ecological Modelling, Elsevier, vol. 488(C).
    8. Kooijman, S.A.L.M., 2024. "Ways to reduce or avoid juvenile-driven cycles in individual-based population models," Ecological Modelling, Elsevier, vol. 490(C).
    9. Lika, Konstadia & Kooijman, Sebastiaan A.L.M., 2024. "The relationship between confidence intervals and distributions of estimators for parameters of deterministic models," Ecological Modelling, Elsevier, vol. 490(C).
    10. Guillaumot, Charlène & Saucède, Thomas & Morley, Simon A. & Augustine, Starrlight & Danis, Bruno & Kooijman, Sebastiaan, 2020. "Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)?," Ecological Modelling, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:428:y:2020:i:c:s0304380020301782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.