IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v484y2023ics0304380023002168.html
   My bibliography  Save this article

Can seaweeds feed the world? Modelling world offshore seaweed production potential

Author

Listed:
  • van Oort, P.A.J.
  • Verhagen, A.
  • van der Werf, A.K.

Abstract

Pressure on the terrestrial ecosystems is large and big concerns exist regarding whether a growing world population can be fed from the land. Little is known about if and how much these concerns could be alleviated by harvesting more from the oceans. We modelled the biophysical production potential of seaweeds, and their current and possible future contribution to world food supply. We estimate seaweeds currently provide up to 0.13% of global food energy supply. Seaweed production is increasing more rapidly than terrestrial production. At current rates of increase we estimate seaweed energy contribution of 0.25% in 2050. Production potential of seaweeds could contribute up to 2 to 14% of global food supply if farming 1% of the modelled suitable space within the Exclusive Economic Zone. We show this large potential contribution to world food supply will only be achieved with unprecedented increases in seaweed production, while offshore seaweed cultivation is still in its infancy. The study shows large uncertainties that warrant further research. Modelling shows vast areas of world oceans are unsuitable because of being too far out of shore, having too low nutrient concentrations or having too high waves. Only 2–9% of world oceans and 6–25% of the Exclusive Economic Zone (EEZ) was shown to be suitable for seaweed production. Identifying suitable sites for offshore seaweed cultivation is therefore important. Site suitability maps reported for the 3 model species can be useful for private companies and policy makers expanding seaweed in new high potential production areas around the world.

Suggested Citation

  • van Oort, P.A.J. & Verhagen, A. & van der Werf, A.K., 2023. "Can seaweeds feed the world? Modelling world offshore seaweed production potential," Ecological Modelling, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023002168
    DOI: 10.1016/j.ecolmodel.2023.110486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Duarte & Annette Bruhn & Dorte Krause-Jensen, 2022. "A seaweed aquaculture imperative to meet global sustainability targets," Nature Sustainability, Nature, vol. 5(3), pages 185-193, March.
    2. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    3. Stefan Kraan, 2013. "Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 27-46, January.
    4. Scott Spillias & Hugo Valin & Miroslav Batka & Frank Sperling & Petr Havlík & David Leclère & Richard S. Cottrell & Katherine R. O’Brien & Eve McDonald-Madden, 2023. "Reducing global land-use pressures with seaweed farming," Nature Sustainability, Nature, vol. 6(4), pages 380-390, April.
    5. Lavaud, Romain & Filgueira, Ramón & Nadeau, André & Steeves, Laura & Guyondet, Thomas, 2020. "A Dynamic Energy Budget model for the macroalga Ulva lactuca," Ecological Modelling, Elsevier, vol. 418(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bigelow Laboratory for Ocean Sciences & Interagency Working Group for Farming Seaweeds and Seagrasses & Editors: & Price, Nichole N. & Rexroad, Caird & Quigley, Charlotte & Stamieszkin, Karen & Langto, 2024. "Farming Seagrasses and Seaweeds: Responsible Restoration & Revenue Generation," USDA Miscellaneous 347311, United States Department of Agriculture.
    2. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
    3. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    4. Sara García-Poza & Adriana Leandro & Carla Cotas & João Cotas & João C. Marques & Leonel Pereira & Ana M. M. Gonçalves, 2020. "The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0," IJERPH, MDPI, vol. 17(18), pages 1-42, September.
    5. Simona Armeli Minicante & Lucia Bongiorni & Amelia De Lazzari, 2022. "Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    6. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    7. Fionnuala Murphy & Ger Devlin & Rory Deverell & Kevin McDonnell, 2013. "Biofuel Production in Ireland—An Approach to 2020 Targets with a Focus on Algal Biomass," Energies, MDPI, vol. 6(12), pages 1-22, December.
    8. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    9. Stavrakidis-Zachou, Orestis & Klagkou, Evridiki & Livanou, Eleni & Lika, Konstadia, 2024. "Modeling the bioenergetics of two herbivorous fish species in the Mediterranean Sea: The native Sarpa salpa and the invasive Siganus rivulatus," Ecological Modelling, Elsevier, vol. 495(C).
    10. Eun Young Park & Jung Kyu Park, 2020. "Enzymatic Saccharification of Laminaria japonica by Cellulase for the Production of Reducing Sugars," Energies, MDPI, vol. 13(3), pages 1-9, February.
    11. Gegg, Per & Wells, Victoria, 2019. "The development of seaweed-derived fuels in the UK: An analysis of stakeholder issues and public perceptions," Energy Policy, Elsevier, vol. 133(C).
    12. Lavaud, Romain & Ullman, David S. & Venolia, Celeste & Thornber, Carol & Green-Gavrielidis, Lindsay & Humphries, Austin, 2023. "Production potential of seaweed and shellfish integrated aquaculture in Narragansett Bay (Rhode Island, U.S.) using an ecosystem model," Ecological Modelling, Elsevier, vol. 481(C).
    13. Herika Mylena Medeiros de Queiroz Andrade & Luiz Pinguelli Rosa & Flavo Elano Soares de Souza & Neilton Fidelis da Silva & Maulori Curié Cabral & Dárlio Inácio Alves Teixeira, 2020. "Seaweed Production Potential in the Brazilian Northeast: A Study on the Eastern Coast of the State of Rio Grande do Norte, RN, Brazil," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    14. Roel J. K. Helmes & Ana M. López-Contreras & Maud Benoit & Helena Abreu & Julie Maguire & Fiona Moejes & Sander W. K. van den Burg, 2018. "Environmental Impacts of Experimental Production of Lactic Acid for Bioplastics from Ulva spp ," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    15. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    16. Li, Yang & Yuan, Lin & Cao, Hao-Bing & Tang, Chen-Dong & Wang, Xian-Ye & Tian, Bo & Dou, Shen-Tang & Zhang, Li-Quan & Shen, Jian, 2021. "A dynamic biomass model of emergent aquatic vegetation under different water levels and salinity," Ecological Modelling, Elsevier, vol. 440(C).
    17. Lennart T. Bach & Veronica Tamsitt & Jim Gower & Catriona L. Hurd & John A. Raven & Wouter Visch & Philip W. Boyd, 2024. "Reply to: Rectifying misinformation on the climate intervention potential of ocean afforestation," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    18. Phoebe Koundouri & Anthony Cox & Arunima Malik & Ben Groom & Brian O'Callaghan & Cameron Hepburn & Catherine Kilelu & Christine Lins & Dale Squires & E. Somanathan & Heba Handoussa & Ian Bateman & Ism, 2023. "The Recovery from the Covid-19 Pandemic as an Opportunity for a Sustainable and Resilient World," DEOS Working Papers 2311, Athens University of Economics and Business.
    19. Rachael Wade & Simona Augyte & Maddelyn Harden & Sergey Nuzhdin & Charles Yarish & Filipe Alberto, 2020. "Macroalgal germplasm banking for conservation, food security, and industry," PLOS Biology, Public Library of Science, vol. 18(2), pages 1-10, February.
    20. Sambusiti, Cecilia & Bellucci, Micol & Zabaniotou, Anastasia & Beneduce, Luciano & Monlau, Florian, 2015. "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 20-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023002168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.