IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v440y2021ics0304380020304622.html
   My bibliography  Save this article

A dynamic biomass model of emergent aquatic vegetation under different water levels and salinity

Author

Listed:
  • Li, Yang
  • Yuan, Lin
  • Cao, Hao-Bing
  • Tang, Chen-Dong
  • Wang, Xian-Ye
  • Tian, Bo
  • Dou, Shen-Tang
  • Zhang, Li-Quan
  • Shen, Jian

Abstract

Emergent aquatic vegetation (EAV) is an important part of wetland ecosystems that provide multiple ecological services. However, human activities and natural changes often influence wetland hydrological regimes such as water levels, salinity, and other factors, which greatly influence the survival and growth of wetland plants. Based on field measurements and control experiments, we developed an EAV model to simulate biomass dynamics under changing conditions of water levels and salinity. This model successfully reproduced the seasonal biomass variation of three typical emergent plants, Phragmites australis, Typha angustifolia and Scirpus mariqueter, and simulated the response of EVA biomass under multiple scenarios of water levels and salinity in the Chongming Dongtan Nature Reserve (CDNR), Shanghai, China. Results suggest that there is a negative correlation between salinity and biomass. An optimal range of water levels are suitable for EAV, and biomass will decrease when the water levels are below or above their optimal range. Applying this dynamic EAV model is a cost-effective approach to find a sustainable and nature-based solution to managing and predicting wetland vegetation changes. The model and approach used in this study may provide a sustainable and nature-based solution for management and protection of wetland ecosystems, and may be transferrable to other wetland systems as well.

Suggested Citation

  • Li, Yang & Yuan, Lin & Cao, Hao-Bing & Tang, Chen-Dong & Wang, Xian-Ye & Tian, Bo & Dou, Shen-Tang & Zhang, Li-Quan & Shen, Jian, 2021. "A dynamic biomass model of emergent aquatic vegetation under different water levels and salinity," Ecological Modelling, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304622
    DOI: 10.1016/j.ecolmodel.2020.109398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Zhen-Ming & Guo, Hai-Qiang & Zhao, Bin & Zhang, Chao & Peltola, Heli & Zhang, Li-Quan, 2016. "Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach," Ecological Modelling, Elsevier, vol. 321(C), pages 110-120.
    2. Song, Xingyang & Zhou, Guangsheng & He, Qijing & Zhou, Huailin, 2020. "Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Brush, Mark J. & Nixon, Scott W., 2010. "Modeling the role of macroalgae in a shallow sub-estuary of Narragansett Bay, RI (USA)," Ecological Modelling, Elsevier, vol. 221(7), pages 1065-1079.
    4. Nakayama, K. & Komai, K. & Tada, K. & Lin, H.C. & Yajima, H. & Yano, S. & Hipsey, M.R. & Tsai, J.W., 2020. "Modeling dissolved inorganic carbon considering submerged aquatic vegetation," Ecological Modelling, Elsevier, vol. 431(C).
    5. Lavaud, Romain & Filgueira, Ramón & Nadeau, André & Steeves, Laura & Guyondet, Thomas, 2020. "A Dynamic Energy Budget model for the macroalga Ulva lactuca," Ecological Modelling, Elsevier, vol. 418(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Canal-Vergés, Paula & Potthoff, Michael & Hansen, Flemming Thorbjørn & Holmboe, Nikolaj & Rasmussen, Erik Kock & Flindt, Mogens R., 2014. "Eelgrass re-establishment in shallow estuaries is affected by drifting macroalgae – Evaluated by agent-based modeling," Ecological Modelling, Elsevier, vol. 272(C), pages 116-128.
    3. van Oort, P.A.J. & Verhagen, A. & van der Werf, A.K., 2023. "Can seaweeds feed the world? Modelling world offshore seaweed production potential," Ecological Modelling, Elsevier, vol. 484(C).
    4. Yaqian Zong & Chao Xu & Kai Zhou & Xinhui Duan & Bo Han & Chenggang He & Hua Jiang, . "Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.
    5. Xingyang Song & Guangsheng Zhou & Qijin He, 2021. "Critical Leaf Water Content for Maize Photosynthesis under Drought Stress and Its Response to Rewatering," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    6. Sun, Xutong & Lv, Aimin & Chen, Dandan & Zhang, Zili & Wang, Xuming & Zhou, Aicun & Xu, Xiaowei & Shao, Qingsong & Zheng, Ying, 2023. "Exogenous spermidine enhanced the water deficit tolerance of Anoectochilus roxburghii by modulating plant antioxidant enzymes and polyamine metabolism," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    8. Stavrakidis-Zachou, Orestis & Klagkou, Evridiki & Livanou, Eleni & Lika, Konstadia, 2024. "Modeling the bioenergetics of two herbivorous fish species in the Mediterranean Sea: The native Sarpa salpa and the invasive Siganus rivulatus," Ecological Modelling, Elsevier, vol. 495(C).
    9. Yaqian Zong & Chao Xu & Kai Zhou & Xinhui Duan & Bo Han & Chenggang He & Hua Jiang, 2023. "Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(11), pages 487-499.
    10. Zhang, Qian & Shen, Juqin & Sun, Fuhua, 2021. "Spatiotemporal differentiation of coupling coordination degree between economic development and water environment and its influencing factors using GWR in China's province," Ecological Modelling, Elsevier, vol. 462(C).
    11. Kamphorst, Samuel Henrique & Amaral Júnior, Antônio Teixeira do & Vergara-Diaz, Omar & Gracia-Romero, Adrian & Fernandez-Gallego, Jose A. & Chang-Espino, Melissa Carolina & Buchaillot, Maria Luisa & R, 2022. "Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Lei Wang & Baizhao Ren & Bin Zhao & Peng Liu & Jiwang Zhang, 2022. "Comparative Yield and Photosynthetic Characteristics of Two Corn ( Zea mays L.) Hybrids Differing in Maturity under Different Irrigation Treatments," Agriculture, MDPI, vol. 12(3), pages 1-16, March.
    13. Xiaowen Lin & Xiaodong Wu & Zhenni Gao & Xuguang Ge & Jiale Xiong & Lingxiao Tan & Hongxu Wei, 2022. "The Effects of Water Depth on the Growth of Two Emergent Plants in an In-Situ Experiment," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    14. Tianpeng Gao & Haoming Wang & Changming Li & Mingbo Zuo & Xueying Wang & Yuan Liu & Yingli Yang & Danghui Xu & Yubing Liu & Xiangwen Fang, 2022. "Effects of Heavy Metal Stress on Physiology, Hydraulics, and Anatomy of Three Desert Plants in the Jinchang Mining Area, China," IJERPH, MDPI, vol. 19(23), pages 1-19, November.
    15. Port, Alexander & Bryan, Karin R. & Pilditch, Conrad A. & Hamilton, David P. & Bischof, Kai, 2015. "Algebraic equilibrium solution of tissue nitrogen quota in algae and the discrepancy between calibrated parameters and physiological properties," Ecological Modelling, Elsevier, vol. 312(C), pages 281-291.
    16. Yuan, Xin & Jiao, Liang & Che, Xichen & Wu, Jingjing & Zhu, Xuli & Li, Qian, 2024. "Study on the water-carbon coupling coordination function on the eastern edge of the Qinghai-Tibet plateau," Ecological Modelling, Elsevier, vol. 487(C).
    17. Shoukun Dong & Xinyu Zhou & Zhipeng Qu & Xiyue Wang, 2023. "Effects of drought stress at different stages on soluble sugar content of soybeans," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(11), pages 500-511.
    18. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.