IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v475y2023ics0304380022003076.html
   My bibliography  Save this article

Low vulnerability of the Mediterranean antipatharian Antipathella subpinnata (Ellis & Solander, 1786) to ocean warming

Author

Listed:
  • Mathilde, Godefroid
  • Tom, Zeimes
  • Lorenzo, Bramanti
  • Pascal, Romans
  • Marzia, Bo
  • Margherita, Toma
  • Bruno, Danis
  • Philippe, Dubois
  • Charlène, Guillaumot

Abstract

Antipatharians (black corals) are major components of mesophotic ecosystems in the Mediterranean Sea. The arborescent species Antipathella subpinnata has received particular attention as it is the most abundant and forms dense forests harbouring high levels of biodiversity. This species is currently categorized as “Near Threatened” in the IUCN Red List, due to increasing fishing pressure and bottom-trawling activities. Yet, the effects of ocean warming have never been investigated for this species, nor for any other antipatharians from temperate regions. Our study aimed at evaluating the effects of increasing seawater temperatures on A. subpinnata, by combining predictive distribution modelling with a physiological tolerance experiment. During the latter, we exposed A. subpinnata for 15 days to different temperature conditions spanning the current seasonal range to forecasted temperatures for 2100, while measuring biological endpoints such as oxygen consumption rates and different signs of stress (tissue necrosis, total antioxidant capacity). Unexpectedly, no stress was found at organism nor cellular level (wide thermal breadth) suggesting low susceptibility of this species to mid-term temperature increase. If the response to the 15-days heat stress is representative of the response to longer-term warming, ocean warming is unlikely to affect A. subpinnata. The species distribution model predicted the presence of A. subpinnata at depths that correspond to temperatures colder than its maximum thermal tolerance (as determined by the physiology experiment). This suggests that the presence of A. subpinnata at shallower depths is not limited by physiological constraints but by other ecological factors including interspecific competition.

Suggested Citation

  • Mathilde, Godefroid & Tom, Zeimes & Lorenzo, Bramanti & Pascal, Romans & Marzia, Bo & Margherita, Toma & Bruno, Danis & Philippe, Dubois & Charlène, Guillaumot, 2023. "Low vulnerability of the Mediterranean antipatharian Antipathella subpinnata (Ellis & Solander, 1786) to ocean warming," Ecological Modelling, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:ecomod:v:475:y:2023:i:c:s0304380022003076
    DOI: 10.1016/j.ecolmodel.2022.110209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022003076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baty, Florent & Ritz, Christian & Charles, Sandrine & Brutsche, Martin & Flandrois, Jean-Pierre & Delignette-Muller, Marie-Laure, 2015. "A Toolbox for Nonlinear Regression in R: The Package nlstools," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i05).
    2. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Micoli & Giuseppe Di Rauso Simeone & Maria Turco & Giuseppe Toscano & Maria A. Rao, 2023. "Anaerobic Digestion of Olive Mill Wastewater in the Presence of Biochar," Energies, MDPI, vol. 16(7), pages 1-14, April.
    2. Tilman Schmider & Anne Grethe Hestnes & Julia Brzykcy & Hannes Schmidt & Arno Schintlmeister & Benjamin R. K. Roller & Ezequiel Jesús Teran & Andrea Söllinger & Oliver Schmidt & Martin F. Polz & Andre, 2024. "Physiological basis for atmospheric methane oxidation and methanotrophic growth on air," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    4. Singer, Alexander & Schweiger, Oliver & Kühn, Ingolf & Johst, Karin, 2018. "Constructing a hybrid species distribution model from standard large-scale distribution data," Ecological Modelling, Elsevier, vol. 373(C), pages 39-52.
    5. Mario Gallego-Abenza & Nicolas Mathevon & David Wheatcroft & Ulrika Candolin, 2020. "Experience modulates an insect’s response to anthropogenic noise," Behavioral Ecology, International Society for Behavioral Ecology, vol. 31(1), pages 90-96.
    6. Gerling, Charlotte & Wätzold, Frank, 2019. "Evaluating policy instruments for the conservation of biodiversity in a changing climate," MPRA Paper 95512, University Library of Munich, Germany.
    7. S. Mahmuda & T. Sigler & E. Knight & J. Corcoran, 2020. "Sectoral evolution and shifting service delivery models in the sharing economy," Business Research, Springer;German Academic Association for Business Research, vol. 13(2), pages 663-684, July.
    8. Malishev, Matthew & Kramer-Schadt, Stephanie, 2021. "Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales," Ecological Modelling, Elsevier, vol. 441(C).
    9. Aysan Badraghi & Beáta Novotná & Jan Frouz & Koloman Krištof & Martin Trakovický & Martin Juriga & Branislav Chvila & Leonardo Montagnani, 2023. "Temporal Dynamics of CO 2 Fluxes over a Non-Irrigated Vineyard," Land, MDPI, vol. 12(10), pages 1-16, October.
    10. Taufan Alam & Priyono Suryanto & Nanang Susyanto & Budiastuti Kurniasih & Panjisakti Basunanda & Eka Tarwaca Susila Putra & Dody Kastono & Dyah Weny Respatie & Muhammad Habib Widyawan & Nurmansyah & A, 2022. "Performance of 45 Non-Linear Models for Determining Critical Period of Weed Control and Acceptable Yield Loss in Soybean Agroforestry Systems," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    11. Tiphaine Guillet & Lauriane Mouysset, 2022. "Productive versus environmental objectives of agricultural policies dealing with climate change: a French case study," Post-Print hal-03919917, HAL.
    12. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2023. "Optimum design for ill-conditioned models: K–optimality and stable parameterizations," LSE Research Online Documents on Economics 122986, London School of Economics and Political Science, LSE Library.
    13. Loehle, Craig, 2018. "Disequilibrium and relaxation times for species responses to climate change," Ecological Modelling, Elsevier, vol. 384(C), pages 23-29.
    14. Barber-O'Malley, Betsy & Lassalle, Géraldine & Chust, Guillem & Diaz, Estibaliz & O'Malley, Andrew & Paradinas Blázquez, César & Pórtoles Marquina, Javier & Lambert, Patrick, 2022. "HyDiaD: A hybrid species distribution model combining dispersal, multi-habitat suitability, and population dynamics for diadromous species under climate change scenarios," Ecological Modelling, Elsevier, vol. 470(C).
    15. Hirche, Martin & Greenacre, Luke & Nenycz-Thiel, Magda & Loose, Simone & Lockshin, Larry, 2021. "SKU performance and distribution: A large-scale analysis of the role of product characteristics with store scanner data," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    16. Divino, Jose Angelo & Maciel, Daniel T.G.N. & Sosa, Wilfredo, 2020. "Government size, composition of public spending and economic growth in Brazil," Economic Modelling, Elsevier, vol. 91(C), pages 155-166.
    17. Diana Carolina Rodríguez-Abello & Jorge Augusto Navarro-Alberto & Luis Ramírez-Avilés & Roberto Zamora-Bustillos, 2018. "The effect of sowing time on the growth of chia (Salvia hispanica L.): What do nonlinear mixed models tell us about it?," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    18. Justin D. Gay & Bryce Currey & E. N. J. Brookshire, 2022. "Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Schouten, Rafael & Vesk, Peter A. & Kearney, Michael R., 2020. "Integrating dynamic plant growth models and microclimates for species distribution modelling," Ecological Modelling, Elsevier, vol. 435(C).
    20. Zhiqiang Wang & Heng Huang & Han Wang & Josep Peñuelas & Jordi Sardans & Ülo Niinemets & Karl J. Niklas & Yan Li & Jiangbo Xie & Ian J. Wright, 2022. "Leaf water content contributes to global leaf trait relationships," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:475:y:2023:i:c:s0304380022003076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.