IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0206582.html
   My bibliography  Save this article

The effect of sowing time on the growth of chia (Salvia hispanica L.): What do nonlinear mixed models tell us about it?

Author

Listed:
  • Diana Carolina Rodríguez-Abello
  • Jorge Augusto Navarro-Alberto
  • Luis Ramírez-Avilés
  • Roberto Zamora-Bustillos

Abstract

Chia (Salvia hispanica L.) is an annual short-day plant whose growth has not been studied extensively in low-altitudes and at temperatures outside of its optimal range. The objective of this study was to describe the growth dynamics of a chia crop from an experimental plantation in south-east Mexico, on three different sowing dates. The chia grew at temperatures (18–37°C) and an altitude (9 m a.s.l.) outside of the recommended conditions (20–30°C, 500–1000 m a.s.l.). Three individual-plant responses were measured weekly, before seed harvest: height, number of leaves and number of inflorescences. Three theoretical nonlinear growth models were fitted to the data, a different model for each response. Mixed-effect model parameters were estimated by maximum likelihood, and the goodness of fit for each model was evaluated using two criteria: Modeling Efficiency and Root Mean Square Error. Chia seed yield was also measured in each treatment. Estimated parameters for plant height confirmed that medium sowing time (MST) and late sowing time (LST) plants had smaller heights than the early sowing time (EST) plants. Moreover, at the end of their life cycle, EST plants had a greater number of leaves and inflorescences, and higher seed yield. All of these differences were associated to the extended time of vegetative growth of EST plants favored by optimal photoperiod and temperature. Growth dynamics of chia during its ontogenic phases was explored, in more detail, with relative growth parameters derived from fitted models: a decrease in photoperiod influences the beginning of the reproductive phase, with the consequent reduction in speed of vegetative growth. In addition, nonlinear mixed-effects models can be useful in understanding the relation between growth parameters, plant maturity, and the suitable time for chia seed harvest. Our results suggest chia crops are adaptable to non-conventional environmental conditions.

Suggested Citation

  • Diana Carolina Rodríguez-Abello & Jorge Augusto Navarro-Alberto & Luis Ramírez-Avilés & Roberto Zamora-Bustillos, 2018. "The effect of sowing time on the growth of chia (Salvia hispanica L.): What do nonlinear mixed models tell us about it?," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0206582
    DOI: 10.1371/journal.pone.0206582
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206582
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206582&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0206582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baty, Florent & Ritz, Christian & Charles, Sandrine & Brutsche, Martin & Flandrois, Jean-Pierre & Delignette-Muller, Marie-Laure, 2015. "A Toolbox for Nonlinear Regression in R: The Package nlstools," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i05).
    2. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Micoli & Giuseppe Di Rauso Simeone & Maria Turco & Giuseppe Toscano & Maria A. Rao, 2023. "Anaerobic Digestion of Olive Mill Wastewater in the Presence of Biochar," Energies, MDPI, vol. 16(7), pages 1-14, April.
    2. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    3. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    4. Tilman Schmider & Anne Grethe Hestnes & Julia Brzykcy & Hannes Schmidt & Arno Schintlmeister & Benjamin R. K. Roller & Ezequiel Jesús Teran & Andrea Söllinger & Oliver Schmidt & Martin F. Polz & Andre, 2024. "Physiological basis for atmospheric methane oxidation and methanotrophic growth on air," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    6. Marrou, Hélène & Ghanem, Michel Edmond & Amri, Moez & Maalouf, Fouad & Ben Sadoun, Sarah & Kibbou, Fatimaezzhara & Sinclair, Thomas R., 2021. "Restrictive irrigation improves yield and reduces risk for faba bean across the Middle East and North Africa: A modeling study," Agricultural Systems, Elsevier, vol. 189(C).
    7. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    9. Mario Gallego-Abenza & Nicolas Mathevon & David Wheatcroft & Ulrika Candolin, 2020. "Experience modulates an insect’s response to anthropogenic noise," Behavioral Ecology, International Society for Behavioral Ecology, vol. 31(1), pages 90-96.
    10. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    11. S. Mahmuda & T. Sigler & E. Knight & J. Corcoran, 2020. "Sectoral evolution and shifting service delivery models in the sharing economy," Business Research, Springer;German Academic Association for Business Research, vol. 13(2), pages 663-684, July.
    12. Stirling, Sofía & Fariña, Santiago & Pacheco, David & Vibart, Ronaldo, 2021. "Whole-farm modelling of grazing dairy systems in Uruguay," Agricultural Systems, Elsevier, vol. 193(C).
    13. Yane Freitas Silva & Rafael Vasconcelos Valadares & Henrique Boriolo Dias & Santiago Vianna Cuadra & Eleanor E. Campbell & Rubens A. C. Lamparelli & Edemar Moro & Rafael Battisti & Marcelo R. Alves & , 2022. "Intense Pasture Management in Brazil in an Integrated Crop-Livestock System Simulated by the DayCent Model," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    14. Liang, Hao & Xu, Junzeng & Hou, Huijing & Qi, Zhiming & Yang, Shihong & Li, Yawei & Hu, Kelin, 2022. "Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems," Agricultural Systems, Elsevier, vol. 203(C).
    15. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    16. Li, Zhuoting & Yang, J.Y. & Drury, C.F. & Yang, X.M. & Reynolds, W.D. & Li, Xiaogang & Hu, Chunsheng, 2017. "Evaluation of the DNDC model for simulating soil temperature, moisture and respiration from monoculture and rotational corn, soybean and winter wheat in Canada," Ecological Modelling, Elsevier, vol. 360(C), pages 230-243.
    17. Suárez-Rey, E.M. & Romero-Gámez, M. & Giménez, C. & Thompson, R.B. & Gallardo, M., 2016. "Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements," Agricultural Systems, Elsevier, vol. 149(C), pages 150-164.
    18. Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
    19. Shi, Xinrui & Hu, Kelin & Batchelor, William D. & Liang, Hao & Wu, Yali & Wang, Qihui & Fu, Jin & Cui, Xiaoqing & Zhou, Feng, 2020. "Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River," Agricultural Water Management, Elsevier, vol. 228(C).
    20. Correndo, Adrian A. & Hefley, Trevor J. & Holzworth, Dean P. & Ciampitti, Ignacio A., 2021. "Revisiting linear regression to test agreement in continuous predicted-observed datasets," Agricultural Systems, Elsevier, vol. 192(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.