IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v441y2021ics0304380020304725.html
   My bibliography  Save this article

Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales

Author

Listed:
  • Malishev, Matthew
  • Kramer-Schadt, Stephanie

Abstract

Animal movement, spanning all time and space scales in nature, is constrained by the individual's available energy to spend, creating a strong link between physiology and observed movement and distribution patterns. To progress, movement ecology needs an explicit focus on common mechanisms, such as energetics, linking behaviour to fitness consequences across scales, but simplified by process-based approaches, such as individual-based models (IBMs). We review the animal movement literature, from fine-scale patch foraging to large-scale geographic migration, focussing on IBMs incorporating individual energetics (hereafter termed eIBMs).

Suggested Citation

  • Malishev, Matthew & Kramer-Schadt, Stephanie, 2021. "Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales," Ecological Modelling, Elsevier, vol. 441(C).
  • Handle: RePEc:eee:ecomod:v:441:y:2021:i:c:s0304380020304725
    DOI: 10.1016/j.ecolmodel.2020.109413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Semeniuk, C.A.D. & Musiani, M. & Hebblewhite, M. & Grindal, S. & Marceau, D.J., 2012. "Incorporating behavioral–ecological strategies in pattern-oriented modeling of caribou habitat use in a highly industrialized landscape," Ecological Modelling, Elsevier, vol. 243(C), pages 18-32.
    2. Kautz, Markus & Schopf, Reinhard & Imron, Muhammad Ali, 2014. "Individual traits as drivers of spatial dispersal and infestation patterns in a host–bark beetle system," Ecological Modelling, Elsevier, vol. 273(C), pages 264-276.
    3. Wang, Magnus & Grimm, Volker, 2007. "Home range dynamics and population regulation: An individual-based model of the common shrew Sorex araneus," Ecological Modelling, Elsevier, vol. 205(3), pages 397-409.
    4. Giacomini, Henrique Corrêa & De Marco, Paulo & Petrere, Miguel, 2009. "Exploring community assembly through an individual-based model for trophic interactions," Ecological Modelling, Elsevier, vol. 220(1), pages 23-39.
    5. Olivier Duriez & Silke Bauer & Anne Destin & Jesper Madsen & Bart A. Nolet & Richard A. Stillman & Marcel Klaassen, 2009. "What decision rules might pink-footed geese use to depart on migration? An individual-based model," Behavioral Ecology, International Society for Behavioral Ecology, vol. 20(3), pages 560-569.
    6. Benjamin P Pauli & Nicholas P McCann & Patrick A Zollner & Robert Cummings & Jonathan H Gilbert & Eric J Gustafson, 2013. "SEARCH: Spatially Explicit Animal Response to Composition of Habitat," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-14, May.
    7. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Tomback, Diana F. & Lorenz, Teresa & Marceau, Danielle, 2017. "Energetic behavioural-strategy prioritization of Clark’s nutcrackers in whitebark pine communities: An agent-based modeling approach," Ecological Modelling, Elsevier, vol. 354(C), pages 123-139.
    8. Steven J. Cooke & Scott G. Hinch & Glenn T. Crossin & David A. Patterson & Karl K. English & Michael C. Healey & J. Steve Macdonald & J. Mark Shrimpton & Jeffrey L. Young & Andrea Lister & Glen Van De, 2008. "Physiological correlates of coastal arrival and river entry timing in late summer Fraser River sockeye salmon (Oncorhynchus nerka)," Behavioral Ecology, International Society for Behavioral Ecology, vol. 19(4), pages 747-758.
    9. Teckentrup, Lisa & Grimm, Volker & Kramer-Schadt, Stephanie & Jeltsch, Florian, 2018. "Community consequences of foraging under fear," Ecological Modelling, Elsevier, vol. 383(C), pages 80-90.
    10. Pe’er, Guy & Kramer-Schadt, Stephanie, 2008. "Incorporating the perceptual range of animals into connectivity models," Ecological Modelling, Elsevier, vol. 213(1), pages 73-85.
    11. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    12. Chimienti, Marianna & Desforges, Jean-Pierre & Beumer, Larissa T. & Nabe-Nielsen, Jacob & van Beest, Floris M. & Schmidt, Niels Martin, 2020. "Energetics as common currency for integrating high resolution activity patterns into dynamic energy budget-individual based models," Ecological Modelling, Elsevier, vol. 434(C).
    13. Chudzińska, Magda & Ayllón, Daniel & Madsen, Jesper & Nabe-Nielsen, Jacob, 2016. "Discriminating between possible foraging decisions using pattern-oriented modelling: The case of pink-footed geese in Mid-Norway during their spring migration," Ecological Modelling, Elsevier, vol. 320(C), pages 299-315.
    14. Ringelman, Kevin M., 2014. "Predator foraging behavior and patterns of avian nest success: What can we learn from an agent-based model?," Ecological Modelling, Elsevier, vol. 272(C), pages 141-149.
    15. Earl, Julia E. & Zollner, Patrick A., 2014. "Effects of animal movement strategies and costs on the distribution of active subsidies across simple landscapes," Ecological Modelling, Elsevier, vol. 283(C), pages 45-52.
    16. Kułakowska, K.A. & Kułakowski, T.M. & Inglis, I.R. & Smith, G.C. & Haynes, P.J. & Prosser, P. & Thorbek, P. & Sibly, R.M., 2014. "Using an individual-based model to select among alternative foraging strategies of woodpigeons: Data support a memory-based model with a flocking mechanism," Ecological Modelling, Elsevier, vol. 280(C), pages 89-101.
    17. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    18. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    19. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.
    2. Byer, Nathan W. & Reid, Brendan N., 2022. "The emergence of imperfect philopatry and fidelity in spatially and temporally heterogeneous environments," Ecological Modelling, Elsevier, vol. 468(C).
    3. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    4. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    5. Chudzińska, Magda & Ayllón, Daniel & Madsen, Jesper & Nabe-Nielsen, Jacob, 2016. "Discriminating between possible foraging decisions using pattern-oriented modelling: The case of pink-footed geese in Mid-Norway during their spring migration," Ecological Modelling, Elsevier, vol. 320(C), pages 299-315.
    6. Casey C Day & Nicholas P McCann & Patrick A Zollner & Jonathan H Gilbert & David M MacFarland, 2019. "Temporal plasticity in habitat selection criteria explains patterns of animal dispersal," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(2), pages 528-540.
    7. Carter, Neil & Levin, Simon & Barlow, Adam & Grimm, Volker, 2015. "Modeling tiger population and territory dynamics using an agent-based approach," Ecological Modelling, Elsevier, vol. 312(C), pages 347-362.
    8. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    9. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    10. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    11. Liu, Chun & Bednarska, Agnieszka J. & Sibly, Richard M. & Murfitt, Roger C. & Edwards, Peter & Thorbek, Pernille, 2014. "Incorporating toxicokinetics into an individual-based model for more realistic pesticide exposure estimates: A case study of the wood mouse," Ecological Modelling, Elsevier, vol. 280(C), pages 30-39.
    12. Pirotta, Enrico & New, Leslie & Harwood, John & Lusseau, David, 2014. "Activities, motivations and disturbance: An agent-based model of bottlenose dolphin behavioral dynamics and interactions with tourism in Doubtful Sound, New Zealand," Ecological Modelling, Elsevier, vol. 282(C), pages 44-58.
    13. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Tomback, Diana F. & Lorenz, Teresa & Marceau, Danielle, 2017. "Energetic behavioural-strategy prioritization of Clark’s nutcrackers in whitebark pine communities: An agent-based modeling approach," Ecological Modelling, Elsevier, vol. 354(C), pages 123-139.
    14. Chudzinska, Magda & Nabe-Nielsen, Jacob & Smout, Sophie & Aarts, Geert & Brasseur, Sophie & Graham, Isla & Thompson, Paul & McConnell, Bernie, 2021. "AgentSeal: Agent-based model describing movement of marine central-place foragers," Ecological Modelling, Elsevier, vol. 440(C).
    15. Malanson, George P. & DeRose, R. Justin & Bekker, Matthew F., 2019. "Individual variation and ecotypic niches in simulations of the impact of climatic volatility," Ecological Modelling, Elsevier, vol. 411(C).
    16. Salecker, Jan & Dislich, Claudia & Wiegand, Kerstin & Meyer, Katrin M. & Pe'er, Guy, 2019. "EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics," EFForTS Discussion Paper Series 29, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    17. Liukkonen, Lauri & Ayllón, Daniel & Kunnasranta, Mervi & Niemi, Marja & Nabe-Nielsen, Jacob & Grimm, Volker & Nyman, Anna-Maija, 2018. "Modelling movements of Saimaa ringed seals using an individual-based approach," Ecological Modelling, Elsevier, vol. 368(C), pages 321-335.
    18. Dick, D.D.C. & Ayllón, D., 2017. "FloMan-MF: Floodplain Management for the Moor Frog − a simulation model for amphibian conservation in dynamic wetlands," Ecological Modelling, Elsevier, vol. 348(C), pages 110-124.
    19. DeGregorio, Brett A. & Westervelt, James D. & Weatherhead, Patrick J. & Sperry, Jinelle H., 2015. "Indirect effect of climate change: Shifts in ratsnake behavior alter intensity and timing of avian nest predation," Ecological Modelling, Elsevier, vol. 312(C), pages 239-246.
    20. Liu, Chun & Sibly, Richard M. & Grimm, Volker & Thorbek, Pernille, 2013. "Linking pesticide exposure and spatial dynamics: An individual-based model of wood mouse (Apodemus sylvaticus) populations in agricultural landscapes," Ecological Modelling, Elsevier, vol. 248(C), pages 92-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:441:y:2021:i:c:s0304380020304725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.