IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v252y2013icp167-175.html
   My bibliography  Save this article

Impact of submerged plants on ecosystem health of the plant-dominated Baiyangdian Lake, China

Author

Listed:
  • Xu, F.
  • Yang, Z.F.
  • Chen, B.
  • Zhao, Y.W.

Abstract

A structurally dynamic model was developed based on the software Pamolare II for the plant-dominated Baiyangdian Lake in North China. The model was applied to forecast the ecological health condition under different scenarios of removing submerged plants. The indicators for ecosystem health included phytoplankton biomass, ratio of zooplankton to phytoplankton biomass, eco-exergy and structural eco-exergy. The results showed that the lake's health degraded following the decrease of removal of submerged plants. Meanwhile, the ecological health improved when the removal of submerged plants increased to 1.5 times the normal level. Finally, based on the model results, the biomass of submerged plants is recommended to be reduced to 140–180g/m2, which may provide reasonable reference for regulating and controlling submerged plants in Baiyangdian Lake.

Suggested Citation

  • Xu, F. & Yang, Z.F. & Chen, B. & Zhao, Y.W., 2013. "Impact of submerged plants on ecosystem health of the plant-dominated Baiyangdian Lake, China," Ecological Modelling, Elsevier, vol. 252(C), pages 167-175.
  • Handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:167-175
    DOI: 10.1016/j.ecolmodel.2012.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012003419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jingjie & Gurkan, Zeren & Jørgensen, Sven Erik, 2010. "Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models," Ecological Modelling, Elsevier, vol. 221(4), pages 693-702.
    2. Jørgensen, S.E. & Nors Nielsen, Søren, 2007. "Application of exergy as thermodynamic indicator in ecology," Energy, Elsevier, vol. 32(5), pages 673-685.
    3. Xu, F. & Yang, Z.F. & Chen, B. & Zhao, Y.W., 2011. "Ecosystem health assessment of the plant-dominated Baiyangdian Lake based on eco-exergy," Ecological Modelling, Elsevier, vol. 222(1), pages 201-209.
    4. N/A, 2005. "Introduction: the legacy of John Rawls," Politics, Philosophy & Economics, , vol. 4(2), pages 155-155, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dash, Siddhant & Kalamdhad, Ajay S., 2022. "Systematic bibliographic research on eutrophication-based ecological modelling of aquatic ecosystems through the lens of science mapping," Ecological Modelling, Elsevier, vol. 472(C).
    2. Mandal, Sudipto & Roy Goswami, Abhishek & Mukhopadhyay, Subhra Kumar & Ray, Santanu, 2015. "Simulation model of phosphorus dynamics of an eutrophic impoundment – East Calcutta Wetlands, a Ramsar site in India," Ecological Modelling, Elsevier, vol. 306(C), pages 226-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zijian & Wu, Xiaofu & Yang, Zhihui & Ouyang, Linnan, 2017. "A simple thermodynamic model for evaluating the ecological restoration effect on a manganese tailing wasteland," Ecological Modelling, Elsevier, vol. 346(C), pages 20-29.
    2. Xu, F. & Yang, Z.F. & Chen, B. & Zhao, Y.W., 2011. "Ecosystem health assessment of the plant-dominated Baiyangdian Lake based on eco-exergy," Ecological Modelling, Elsevier, vol. 222(1), pages 201-209.
    3. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    4. Michelle Lim, 2016. "Governance criteria for effective transboundary biodiversity conservation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(6), pages 797-813, December.
    5. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    6. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    7. Allan O’Connor & David Audretsch, 2023. "Regional entrepreneurial ecosystems: learning from forest ecosystems," Small Business Economics, Springer, vol. 60(3), pages 1051-1079, March.
    8. Niu, Zhiguang & Gou, Qianqian & Wang, Xiujun & Zhang, Ying, 2016. "Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis," Ecological Modelling, Elsevier, vol. 335(C), pages 54-63.
    9. Gurkan, Zeren & Christensen, Asbjørn & Maar, Marie & Møller, Eva Friis & Madsen, Kristine Skovgaard & Munk, Peter & Mosegaard, Henrik, 2013. "Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic–biogeochemical model," Ecological Modelling, Elsevier, vol. 250(C), pages 294-306.
    10. Ali Kharrazi & Brian D. Fath & Harald Katzmair, 2016. "Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    11. Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
    12. Klaus Gugler & Mario Liebensteiner & Adhurim Haxhimusa & Nora Schindler, 2016. "Investment under Uncertainty in Electricity Generation," Department of Economics Working Papers wuwp234, Vienna University of Economics and Business, Department of Economics.
    13. Haifeng Zhang & Ming Zhao & Binghong Wang, 2010. "Directly Adjusting Node'S Impacts To Realize The Synchronization Of Complex Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 785-793.
    14. Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.
    15. Gurkan, Zeren & Christensen, Asbjørn & van Deurs, Mikael & Mosegaard, Henrik, 2012. "Growth and survival of larval and early juvenile Lesser Sandeel in patchy prey field in the North Sea: An examination using individual-based modeling," Ecological Modelling, Elsevier, vol. 232(C), pages 78-90.
    16. Chen, Mingli & Wu, Zijian & Fu, Xinxi & Ouyang, Linnan & Wu, Xiaofu, 2021. "Thermodynamic analysis of an ecologically restored plant community:Number of species," Ecological Modelling, Elsevier, vol. 455(C).
    17. Wu, Zijian & Wu, Xiaofu & Yang, Zhihui & Ouyang, Linnan, 2018. "Internal energy ratios as ecological indicators for description of the phytoremediation process on a manganese tailing site," Ecological Modelling, Elsevier, vol. 374(C), pages 14-21.
    18. Skene, Keith R., 2013. "The energetics of ecological succession: A logistic model of entropic output," Ecological Modelling, Elsevier, vol. 250(C), pages 287-293.
    19. Botzem, Sebastian & Dobusch, Leonhard, 2017. "Financialization as strategy: Accounting for inter-organizational value creation in the European real estate industry," Accounting, Organizations and Society, Elsevier, vol. 59(C), pages 31-43.
    20. Zhang, Xiaoming & Sheng, Jiuling, 2017. "A Peircean semiotic interpretation of a social sign," Annals of Tourism Research, Elsevier, vol. 64(C), pages 163-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:167-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.