IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v471y2022ics0304380022001478.html
   My bibliography  Save this article

Development of interval transient pollution distribution model and its application in the Fenghuangshan drinking water source

Author

Listed:
  • Zhang, Xinyi
  • Zhu, Qiande
  • Zhai, Aifeng
  • Ding, Xiaowen

Abstract

For the purpose of studying the spreading regularity of metal pollution accident and resolving problem of parameters being difficult to obtain in the drinking water source, interval transient pollution distribution model was developed and applied to the Fenghuangshan drinking water source, Three Gorges Reservoir. After parameter calibration and model validation, the mean absolute deviation between the calculated value (data obtained by the model simulation) and the measured value (the real measured data of the Zigui drinking water source area) was less than 7%. Thence, the promoted model can be used in practical accident pollution. Relying on MATLAB 2014a, this research presented the cadmium pollution-spreading pattern in the drinking water source based on the proposed model. Under the premise of different hydrological periods and different initial pollutant quality, this study focused on forecasting and analyzing the spatial distribution of pollution accident within one hour, concentration diffusion of pollution source change with time and concentration diffusion in the drinking water source with time. The results showed that the variation of cadmium concentration was influenced by the distance between the accidental emission source and shore. Specifically, the distance increases, and the appearance of the second pollution peak is subsequently delayed. Moreover, the dilution rate of pollutant was directly proportional to water depth and flow velocity, and the flow velocity has more important influence on the diffusion of pollutants than others do. The purpose of this study is to develop an effective model to forecast and solve the metal pollution accident in drinking water sources under the condition of incomplete or uncertain parameters in order to solve the problem of difficult hydrological data acquisition. The results provide some new insights and references for researchers and decision makers to predict and respond to emergency accident pollution in drinking water sources.

Suggested Citation

  • Zhang, Xinyi & Zhu, Qiande & Zhai, Aifeng & Ding, Xiaowen, 2022. "Development of interval transient pollution distribution model and its application in the Fenghuangshan drinking water source," Ecological Modelling, Elsevier, vol. 471(C).
  • Handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s0304380022001478
    DOI: 10.1016/j.ecolmodel.2022.110037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    2. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    3. Ting Ma & Siao Sun & Guangtao Fu & Jim W. Hall & Yong Ni & Lihuan He & Jiawei Yi & Na Zhao & Yunyan Du & Tao Pei & Weiming Cheng & Ci Song & Chuanglin Fang & Chenghu Zhou, 2020. "Pollution exacerbates China’s water scarcity and its regional inequality," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoming Shi & Fei Xu & Jinfu Cheng & Victor Shi, 2023. "Exploring the Evolution of the Food Chain under Environmental Pollution with Mathematical Modeling and Numerical Simulation," Sustainability, MDPI, vol. 15(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    2. Chunguang Bai & Joseph Sarkis, 2013. "Green information technology strategic justification and evaluation," Information Systems Frontiers, Springer, vol. 15(5), pages 831-847, November.
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    5. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    6. Tian, Chuyin & Huang, Guohe & Xie, Yulei, 2021. "Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China," Renewable Energy, Elsevier, vol. 168(C), pages 1096-1111.
    7. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    8. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    9. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    10. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    11. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    12. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    13. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    14. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    15. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    16. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
    17. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    18. Hsu, Chaug-Ing & Wen, Yuh-Horng, 2000. "Application of Grey theory and multiobjective programming towards airline network design," European Journal of Operational Research, Elsevier, vol. 127(1), pages 44-68, November.
    19. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    20. Mavrotas, George & Gakis, Nikos & Skoulaxinou, Sotiria & Katsouros, Vassilis & Georgopoulou, Elena, 2015. "Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1205-1222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s0304380022001478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.