IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v464y2022ics0304380021003471.html
   My bibliography  Save this article

Exergy assessment of topsoil fertility

Author

Listed:
  • Valero, Antonio
  • Palacino, Bárbara
  • Ascaso, Sonia
  • Valero, Alicia

Abstract

Soil degradation, affecting around 38% of the world's cropland, threatens the global food supply. Due to the soil's complexity, the measure of soil degradation that involves the loss of soil fertility due to crop system management processes represents an unsolved problem. Exergy is a property with the potential to be used in soil fertility and/or degradation analysis. A methodology to determine the exergy value fenced in a fertile soil due to its inorganic and organic components is established in this study and will be applied to evaluate soil fertility, degradation, and quality. As a first step, the exergy of perfect topsoil with optimum characteristics called "OptSOIL" is determined. The "OptSOIL" is established by agronomic expertise and will allow establishing a general theoretical reference suitable to execute exergy assessments of soils and compare the degradation grade of any soil concerning the best possible. Consequently, we introduce a perfect fertile planetary crust made of “OptNUT” and “OptSOM” invariant and independent of the different local textures, but not independent of their water content and aeration. We call this imaginary crust -copiously fertile- Pristinia as opposed to Thanatia, a dead state referring to abiotic resources. Thus, any real agricultural soil will be an intermediate soil between Pristinia and Thanatia. This idea might serve to quantitatively diagnose an assessment of all the concepts by which soil is degraded. The methodology has been validated through laboratory agronomic tests for different soils, concluding that exergy is a rigorous indicator to measure topsoil fertility.

Suggested Citation

  • Valero, Antonio & Palacino, Bárbara & Ascaso, Sonia & Valero, Alicia, 2022. "Exergy assessment of topsoil fertility," Ecological Modelling, Elsevier, vol. 464(C).
  • Handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003471
    DOI: 10.1016/j.ecolmodel.2021.109802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    2. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    3. Valero, Alicia & Valero, Antonio & Gómez, Javier B., 2011. "The crepuscular planet. A model for the exhausted continental crust," Energy, Elsevier, vol. 36(1), pages 694-707.
    4. Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
    5. Atanu Mukherjee & Rattan Lal, 2014. "Comparison of Soil Quality Index Using Three Methods," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    6. Valero, Antonio & Valero, Alicia, 2012. "Exergy of comminution and the Thanatia Earth's model," Energy, Elsevier, vol. 44(1), pages 1085-1093.
    7. Kemper, W. D. & Koch, E.J., 1966. "Aggregate Stability of Soils from Western United States and Canada," Technical Bulletins 171386, United States Department of Agriculture, Economic Research Service.
    8. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Aguayo, Mauricio & Casas-Ledón, Yannay, 2023. "Sustainable wind energy planning through ecosystem service impact valuation and exergy: A study case in south-central Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valero, Alicia & Valero, Antonio & Stanek, Wojciech, 2018. "Assessing the exergy degradation of the natural capital: From Szargut's updated reference environment to the new thermoecological-cost methodology," Energy, Elsevier, vol. 163(C), pages 1140-1149.
    2. Domínguez, Adriana & Czarnowska, Lucyna & Valero, Alicia & Stanek, Wojciech & Valero, Antonio, 2014. "Thermo-ecological and exergy replacement costs of nickel processing," Energy, Elsevier, vol. 72(C), pages 103-114.
    3. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    4. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    5. Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
    6. Valero, Alicia & Valero, Antonio & Vieillard, Philippe, 2012. "The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy," Energy, Elsevier, vol. 41(1), pages 121-127.
    7. Jose-Luis, Palacios & Abadias, Alejandro & Valero, Alicia & Valero, Antonio & Reuter, Markus, 2019. "The energy needed to concentrate minerals from common rocks: The case of copper ore," Energy, Elsevier, vol. 181(C), pages 494-503.
    8. Antonio Valero & Alicia Valero, 2015. "Thermodynamic Rarity and the Loss of Mineral Wealth," Energies, MDPI, vol. 8(2), pages 1-16, January.
    9. Valero, Alicia & Domínguez, Adriana & Valero, Antonio, 2015. "Exergy cost allocation of by-products in the mining and metallurgical industry," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 128-142.
    10. Abel Ortego & Alicia Valero & Antonio Valero & Eliette Restrepo, 2018. "Vehicles and Critical Raw Materials: A Sustainability Assessment Using Thermodynamic Rarity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1005-1015, October.
    11. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    12. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    13. Domínguez, Adriana & Valero, Alicia & Valero, Antonio, 2013. "Exergy accounting applied to metallurgical systems: The case of nickel processing," Energy, Elsevier, vol. 62(C), pages 37-45.
    14. Calvo, Guiomar & Valero, Alicia & Valero, Antonio & Carpintero, Óscar, 2015. "An exergoecological analysis of the mineral economy in Spain," Energy, Elsevier, vol. 88(C), pages 2-8.
    15. Gabriel Carmona, Luis & Whiting, Kai & Valero, Alicia & Valero, Antonio, 2015. "Colombian mineral resources: An analysis from a Thermodynamic Second Law perspective," Resources Policy, Elsevier, vol. 45(C), pages 23-28.
    16. Valero, Antonio & Valero, Alicia, 2012. "Exergy of comminution and the Thanatia Earth's model," Energy, Elsevier, vol. 44(1), pages 1085-1093.
    17. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    18. Guiomar Calvo & Alicia Valero & Luis Gabriel Carmona & Kai Whiting, 2015. "Physical Assessment of the Mineral Capital of a Nation: The Case of an Importing and an Exporting Country," Resources, MDPI, vol. 4(4), pages 1-14, November.
    19. Agudelo, Andrés & Valero, Antonio & Usón, Sergio, 2013. "The fossil trace of CO2 emissions in multi-fuel energy systems," Energy, Elsevier, vol. 58(C), pages 236-246.
    20. Sobhy Khedr & Melchiorre Casisi & Mauro Reini, 2022. "The Thermoeconomic Environment Cost Indicator (i ex-TEE ) as a One-Dimensional Measure of Resource Sustainability," Energies, MDPI, vol. 15(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.