IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp236-246.html
   My bibliography  Save this article

The fossil trace of CO2 emissions in multi-fuel energy systems

Author

Listed:
  • Agudelo, Andrés
  • Valero, Antonio
  • Usón, Sergio

Abstract

The search for sustainability in energy systems has increased the concern to reduce pollutant emissions and waste. Among the several strategies that help in this task are increased energy efficiency, carbon capture and storage, hybrid renewable-fossil systems, and system integration. All of them often result in complex multi-fuel multi-product systems. Conventional thermoeconomic analysis of such systems does not give information related to the type of energy source used, nor to the emissions generated. The aim of this work is to provide a method to reveal the fate of energy resources inside a system. We present a methodology to decompose exergy flows into as many parts as different types of external resources a system has. The proposed method was applied to a cogeneration system, showing to be a powerful tool to analyze multi-fuel systems, especially hybrid fossil-renewable plants, since the evolution of fossil resources can be tracked through the entire system. It also presents an answer to the unsolved problem of discriminated conversion efficiency, fuel impact and CO2 emissions impact when different fuels are used, which allows an extended analysis of energy systems, by taking into account the existence of a carbon tax.

Suggested Citation

  • Agudelo, Andrés & Valero, Antonio & Usón, Sergio, 2013. "The fossil trace of CO2 emissions in multi-fuel energy systems," Energy, Elsevier, vol. 58(C), pages 236-246.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:236-246
    DOI: 10.1016/j.energy.2013.06.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catalina, Tiberiu & Virgone, Joseph & Blanco, Eric, 2011. "Multi-source energy systems analysis using a multi-criteria decision aid methodology," Renewable Energy, Elsevier, vol. 36(8), pages 2245-2252.
    2. Valero, Alicia & Valero, Antonio & Gómez, Javier B., 2011. "The crepuscular planet. A model for the exhausted continental crust," Energy, Elsevier, vol. 36(1), pages 694-707.
    3. Harvey, L.D.Danny, 1990. "Managing atmospheric CO2: Policy implications," Energy, Elsevier, vol. 15(2), pages 91-104.
    4. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    5. Tempesti, Duccio & Fiaschi, Daniele, 2013. "Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy," Energy, Elsevier, vol. 58(C), pages 45-51.
    6. Owen, Anthony D., 2006. "Renewable energy: Externality costs as market barriers," Energy Policy, Elsevier, vol. 34(5), pages 632-642, March.
    7. He, Chang & Feng, Xiao, 2012. "Evaluation indicators for energy-chemical systems with multi-feed and multi-product," Energy, Elsevier, vol. 43(1), pages 344-354.
    8. Beckmann, Günter & Klopries, Burkhard, 1991. "CO2 increase: Questions beyond climatic change," Energy, Elsevier, vol. 16(11), pages 1317-1330.
    9. Li, Yuanyuan & Zhang, Na & Cai, Ruixian, 2013. "Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming," Energy, Elsevier, vol. 58(C), pages 36-44.
    10. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    11. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    12. Basu, Prabir & Butler, James & Leon, Mathias A., 2011. "Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants," Renewable Energy, Elsevier, vol. 36(1), pages 282-288.
    13. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    14. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part II: Dynamic cost analysis," Energy, Elsevier, vol. 52(C), pages 17-26.
    15. Sheu, Elysia J. & Mitsos, Alexander, 2013. "Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle," Energy, Elsevier, vol. 51(C), pages 193-202.
    16. Valero, Antonio & Correas, Luis & Zaleta, Alejandro & Lazzaretto, Andrea & Verda, Vittorio & Reini, Mauro & Rangel, Victor, 2004. "On the thermoeconomic approach to the diagnosis of energy system malfunctions," Energy, Elsevier, vol. 29(12), pages 1875-1887.
    17. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    18. Royo, Javier & Sebastián, Fernando & García-Galindo, Daniel & Gómez, Maider & Díaz, Maryori, 2012. "Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case," Energy, Elsevier, vol. 48(1), pages 255-267.
    19. Valero, Antonio & Usón, Sergio, 2006. "Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant," Energy, Elsevier, vol. 31(10), pages 1643-1655.
    20. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    21. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    22. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    23. Gou, Chenhua & Cai, Ruixian & Hong, Hui, 2007. "A novel hybrid oxy-fuel power cycle utilizing solar thermal energy," Energy, Elsevier, vol. 32(9), pages 1707-1714.
    24. Usón, Sergio & Valero, Antonio & Agudelo, Andrés, 2012. "Thermoeconomics and Industrial Symbiosis. Effect of by-product integration in cost assessment," Energy, Elsevier, vol. 45(1), pages 43-51.
    25. Bruhn, Matthias, 2002. "Hybrid geothermal–fossil electricity generation from low enthalpy geothermal resources: geothermal feedwater preheating in conventional power plants," Energy, Elsevier, vol. 27(4), pages 329-346.
    26. Rehman, Shafiqur & Mahbub Alam, Md. & Meyer, J.P. & Al-Hadhrami, Luai M., 2012. "Feasibility study of a wind–pv–diesel hybrid power system for a village," Renewable Energy, Elsevier, vol. 38(1), pages 258-268.
    27. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    28. Valero, Antonio & Correas, Luis & Zaleta, Alejandro & Lazzaretto, Andrea & Verda, Vittorio & Reini, Mauro & Rangel, Victor, 2004. "On the thermoeconomic approach to the diagnosis of energy system malfunctions," Energy, Elsevier, vol. 29(12), pages 1889-1907.
    29. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    30. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    2. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    3. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    4. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    5. Fuentes-Cortés, Luis Fabián & Dowling, Alexander W. & Rubio-Maya, Carlos & Zavala, Víctor M. & Ponce-Ortega, José María, 2016. "Integrated design and control of multigeneration systems for building complexes," Energy, Elsevier, vol. 116(P2), pages 1403-1416.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    2. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    3. Kostowski, Wojciech J. & Usón, Sergio & Stanek, Wojciech & Bargiel, Paweł, 2014. "Thermoecological cost of electricity production in the natural gas pressure reduction process," Energy, Elsevier, vol. 76(C), pages 10-18.
    4. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    5. Usón, Sergio & Valero, Antonio & Agudelo, Andrés, 2012. "Thermoeconomics and Industrial Symbiosis. Effect of by-product integration in cost assessment," Energy, Elsevier, vol. 45(1), pages 43-51.
    6. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    7. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2013. "Allocating electricity production from a hybrid fossil-renewable power plant among its multi primary resources," Energy, Elsevier, vol. 60(C), pages 344-360.
    8. Verda, Vittorio & Borchiellini, Romano, 2007. "Exergy method for the diagnosis of energy systems using measured data," Energy, Elsevier, vol. 32(4), pages 490-498.
    9. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    10. Zaleta-Aguilar, Alejandro & Olivares-Arriaga, Abraham & Cano-Andrade, Sergio & Rodriguez-Alejandro, David A., 2016. "β-characterization by irreversibility analysis: A thermoeconomic diagnosis method," Energy, Elsevier, vol. 111(C), pages 850-858.
    11. Verda, Vittorio, 2006. "Accuracy level in thermoeconomic diagnosis of energy systems," Energy, Elsevier, vol. 31(15), pages 3248-3260.
    12. Mendes, Tiago & Venturini, Osvaldo José & da Silva, Julio Augusto Mendes & Orozco, Dimas José Rúa & Pirani, Marcelo José, 2020. "Disaggregation models for the thermoeconomic diagnosis of a vapor compression refrigeration system," Energy, Elsevier, vol. 193(C).
    13. Kim, Jong Suk & Chen, Jun & Garcia, Humberto E., 2016. "Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems," Energy, Elsevier, vol. 112(C), pages 52-66.
    14. Torres, C. & Valero, A. & Rangel, V. & Zaleta, A., 2008. "On the cost formation process of the residues," Energy, Elsevier, vol. 33(2), pages 144-152.
    15. Sobhy Khedr & Melchiorre Casisi & Mauro Reini, 2022. "The Thermoeconomic Environment Cost Indicator (i ex-TEE ) as a One-Dimensional Measure of Resource Sustainability," Energies, MDPI, vol. 15(6), pages 1-14, March.
    16. Antonio Valero & Alicia Valero, 2015. "Thermodynamic Rarity and the Loss of Mineral Wealth," Energies, MDPI, vol. 8(2), pages 1-16, January.
    17. Szymon Kuczyński & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej & Tomasz Włodek, 2019. "Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations," Energies, MDPI, vol. 12(4), pages 1-21, February.
    18. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    19. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    20. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:236-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.