IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v45y2015icp23-28.html
   My bibliography  Save this article

Colombian mineral resources: An analysis from a Thermodynamic Second Law perspective

Author

Listed:
  • Gabriel Carmona, Luis
  • Whiting, Kai
  • Valero, Alicia
  • Valero, Antonio

Abstract

Natural non-renewable resources, such as minerals, are becoming increasingly depleted against a backdrop of intense industrialisation. Through the exergy analysis and thermoeconomic tools it is possible to assign a figure to the degree of depletion. This is because the exergy replacement cost represents the effort needed by humankind to return minerals to their original conditions from the “commercially dead state”, Thanatia. The authors undertake an evaluation of the ten most significantly produced minerals in Colombia, since 1990. Via the 2011 mineral balance, this paper shows that the highest exergetic losses are in the extraction for export and not national consumption rates. The loss in mineral wealth, quantified in exergy terms for 2011 is 119.2Mtoe (4.99×109GJ) and has, since 1990, accumulated to 1,543.4Mtoe (6.46×1010GJ). In converting these losses into economic terms, it becomes clear that the nation must re-think its mineral export strategy, if it is develop sustainably.

Suggested Citation

  • Gabriel Carmona, Luis & Whiting, Kai & Valero, Alicia & Valero, Antonio, 2015. "Colombian mineral resources: An analysis from a Thermodynamic Second Law perspective," Resources Policy, Elsevier, vol. 45(C), pages 23-28.
  • Handle: RePEc:eee:jrpoli:v:45:y:2015:i:c:p:23-28
    DOI: 10.1016/j.resourpol.2015.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420715000306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2015.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    2. Valero, Alicia & Valero, Antonio & Gómez, Javier B., 2011. "The crepuscular planet. A model for the exhausted continental crust," Energy, Elsevier, vol. 36(1), pages 694-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    2. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    3. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    4. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    5. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Xiong, Weiwei, 2016. "Research on diversity of mineral resources carrying capacity in Chinese mining cities," Resources Policy, Elsevier, vol. 47(C), pages 108-114.
    6. Kai Whiting & Luis Gabriel Carmona & Angeles Carrasco & Tânia Sousa, 2017. "Exergy Replacement Cost of Fossil Fuels: Closing the Carbon Cycle," Energies, MDPI, vol. 10(7), pages 1-21, July.
    7. Li, Tianjiao & Wang, Anjian & Xing, Wanli & Li, Ying & Zhou, Yanjing, 2019. "Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    8. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    9. Guiomar Calvo & Alicia Valero & Luis Gabriel Carmona & Kai Whiting, 2015. "Physical Assessment of the Mineral Capital of a Nation: The Case of an Importing and an Exporting Country," Resources, MDPI, vol. 4(4), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    2. Abel Ortego & Alicia Valero & Antonio Valero & Eliette Restrepo, 2018. "Vehicles and Critical Raw Materials: A Sustainability Assessment Using Thermodynamic Rarity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1005-1015, October.
    3. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    4. Valero, Alicia & Valero, Antonio & Stanek, Wojciech, 2018. "Assessing the exergy degradation of the natural capital: From Szargut's updated reference environment to the new thermoecological-cost methodology," Energy, Elsevier, vol. 163(C), pages 1140-1149.
    5. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    6. Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
    7. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    8. Domínguez, Adriana & Valero, Alicia & Valero, Antonio, 2013. "Exergy accounting applied to metallurgical systems: The case of nickel processing," Energy, Elsevier, vol. 62(C), pages 37-45.
    9. Calvo, Guiomar & Valero, Alicia & Valero, Antonio & Carpintero, Óscar, 2015. "An exergoecological analysis of the mineral economy in Spain," Energy, Elsevier, vol. 88(C), pages 2-8.
    10. Valero, Alicia & Valero, Antonio & Vieillard, Philippe, 2012. "The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy," Energy, Elsevier, vol. 41(1), pages 121-127.
    11. Valero, Antonio & Valero, Alicia, 2012. "Exergy of comminution and the Thanatia Earth's model," Energy, Elsevier, vol. 44(1), pages 1085-1093.
    12. Domínguez, Adriana & Czarnowska, Lucyna & Valero, Alicia & Stanek, Wojciech & Valero, Antonio, 2014. "Thermo-ecological and exergy replacement costs of nickel processing," Energy, Elsevier, vol. 72(C), pages 103-114.
    13. Jose-Luis, Palacios & Abadias, Alejandro & Valero, Alicia & Valero, Antonio & Reuter, Markus, 2019. "The energy needed to concentrate minerals from common rocks: The case of copper ore," Energy, Elsevier, vol. 181(C), pages 494-503.
    14. Guiomar Calvo & Alicia Valero & Luis Gabriel Carmona & Kai Whiting, 2015. "Physical Assessment of the Mineral Capital of a Nation: The Case of an Importing and an Exporting Country," Resources, MDPI, vol. 4(4), pages 1-14, November.
    15. Agudelo, Andrés & Valero, Antonio & Usón, Sergio, 2013. "The fossil trace of CO2 emissions in multi-fuel energy systems," Energy, Elsevier, vol. 58(C), pages 236-246.
    16. Sobhy Khedr & Melchiorre Casisi & Mauro Reini, 2022. "The Thermoeconomic Environment Cost Indicator (i ex-TEE ) as a One-Dimensional Measure of Resource Sustainability," Energies, MDPI, vol. 15(6), pages 1-14, March.
    17. Valero, Antonio & Palacino, Bárbara & Ascaso, Sonia & Valero, Alicia, 2022. "Exergy assessment of topsoil fertility," Ecological Modelling, Elsevier, vol. 464(C).
    18. Antonio Valero & Alicia Valero, 2015. "Thermodynamic Rarity and the Loss of Mineral Wealth," Energies, MDPI, vol. 8(2), pages 1-16, January.
    19. Valero, Alicia & Domínguez, Adriana & Valero, Antonio, 2015. "Exergy cost allocation of by-products in the mining and metallurgical industry," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 128-142.
    20. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:45:y:2015:i:c:p:23-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.