IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p723-d135017.html
   My bibliography  Save this article

Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective

Author

Listed:
  • Jose-Luis Palacios

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Ladrón de Guevara E11·253, P.O.·Box 17-01-2759, Quito, Ecuador)

  • Guiomar Calvo

    (Research Centre for Energy Resources and Consumption (CIRCE), Universidad de Zaragoza, Calle Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Alicia Valero

    (Research Centre for Energy Resources and Consumption (CIRCE), Universidad de Zaragoza, Calle Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Antonio Valero

    (Research Centre for Energy Resources and Consumption (CIRCE), Universidad de Zaragoza, Calle Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

Abstract

Latin America has traditionally been a raw material supplier since colonial times. In this paper, we analyze mineral exports from an exergoecology perspective from twenty countries in Latin American (LA-20). We apply material flow analysis (MFA) principles along with the concept of the exergy replacement cost (ERC), which considers both quantity and thermodynamic quality of minerals, reflecting their scarcity in the crust. ERC determines the energy that would be required to recover minerals to their original conditions in the mines once they have been totally dispersed into the Earth’s crust, with prevailing technology. Using ERC has helped us identify the importance of certain traded minerals that could be overlooked in a traditional MFA based on a mass basis only. Our method has enabled us to determine mineral balance, both in mass (tonnes) and in ERC terms (Mtoe). Using indicators, both in mass and ERC, we have assessed the self-sufficiency and dependency of the region. We have also analyzed the mineral exports flows from Latin America for 2013. Results show that half of the mineral production from LA-20 was mainly exported. High-quality minerals, such as, gold, silver, and aluminum were largely exported to China and the United States. Extraction of high-quality minerals also implies higher losses of natural stock and environmental overburdens in the region.

Suggested Citation

  • Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:723-:d:135017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patricio Jaramillo & Sergio Lehmann & David Moreno., 2009. "China, Precios de Commodities y Desempeño de América Latina: Algunos Hechos Estilizados," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 46(133), pages 67-105.
    2. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    3. Gabriel Carmona, Luis & Whiting, Kai & Valero, Alicia & Valero, Antonio, 2015. "Colombian mineral resources: An analysis from a Thermodynamic Second Law perspective," Resources Policy, Elsevier, vol. 45(C), pages 23-28.
    4. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    5. Douglas Aitken & Diego Rivera & Alex Godoy-Faúndez & Eduardo Holzapfel, 2016. "Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile," Sustainability, MDPI, vol. 8(2), pages 1-18, February.
    6. Astrid Allesch & Paul H. Brunner, 2015. "Material Flow Analysis as a Decision Support Tool for Waste Management: A Literature Review," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 753-764, October.
    7. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    8. West, James & Schandl, Heinz, 2013. "Material use and material efficiency in Latin America and the Caribbean," Ecological Economics, Elsevier, vol. 94(C), pages 19-27.
    9. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    10. Vallejo, Maria Cristina, 2010. "Biophysical structure of the Ecuadorian economy, foreign trade, and policy implications," Ecological Economics, Elsevier, vol. 70(2), pages 159-169, December.
    11. Pin-Chih Wang & Yuh-Ming Lee & Chiu-Yang Chen, 2014. "Estimation of Resource Productivity and Efficiency: An Extended Evaluation of Sustainability Related to Material Flow," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    12. Daniela Russi & Ana C. Gonzalez-Martinez & José Carlos Silva-Macher & Stefan Giljum & Joan Martínez-Alier & Maria Cristina Vallejo, 2008. "Material Flows in Latin America," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 704-720, October.
    13. Henckens, M.L.C.M. & van Ierland, E.C. & Driessen, P.P.J. & Worrell, E., 2016. "Mineral resources: Geological scarcity, market price trends, and future generations," Resources Policy, Elsevier, vol. 49(C), pages 102-111.
    14. Valero, Alicia & Valero, Antonio & Vieillard, Philippe, 2012. "The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy," Energy, Elsevier, vol. 41(1), pages 121-127.
    15. Valero, Alicia & Valero, Antonio & Gómez, Javier B., 2011. "The crepuscular planet. A model for the exhausted continental crust," Energy, Elsevier, vol. 36(1), pages 694-707.
    16. Perez-Rincon, Mario Alejandro, 2006. "Colombian international trade from a physical perspective: Towards an ecological "Prebisch thesis"," Ecological Economics, Elsevier, vol. 59(4), pages 519-529, October.
    17. Matthew Himley, 2010. "Global Mining and the Uneasy Neoliberalization of Sustainable Development," Sustainability, MDPI, vol. 2(10), pages 1-21, October.
    18. Mario Alejandro Pérez Rincón, 2006. "Colombian international trade from a physical perspective: towards an ecological "Prebisch thesis"," UHE Working papers 2006_03, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    2. Li, Tianjiao & Wang, Anjian & Xing, Wanli & Li, Ying & Zhou, Yanjing, 2019. "Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    4. Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
    5. Guo, Jianxin & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Deployment of clean energy technologies towards carbon neutrality under resource constraints," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    2. Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
    3. West, James & Schandl, Heinz, 2013. "Material use and material efficiency in Latin America and the Caribbean," Ecological Economics, Elsevier, vol. 94(C), pages 19-27.
    4. Samaniego, Pablo & Vallejo, María Cristina & Martínez-Alier, Joan, 2017. "Commercial and biophysical deficits in South America, 1990–2013," Ecological Economics, Elsevier, vol. 133(C), pages 62-73.
    5. Domínguez, Adriana & Czarnowska, Lucyna & Valero, Alicia & Stanek, Wojciech & Valero, Antonio, 2014. "Thermo-ecological and exergy replacement costs of nickel processing," Energy, Elsevier, vol. 72(C), pages 103-114.
    6. Jose-Luis, Palacios & Abadias, Alejandro & Valero, Alicia & Valero, Antonio & Reuter, Markus, 2019. "The energy needed to concentrate minerals from common rocks: The case of copper ore," Energy, Elsevier, vol. 181(C), pages 494-503.
    7. Muñoz, Pablo & Strohmaier, Rita & Roca, Jordi, 2011. "On the North-South trade in the Americas and its ecological asymmetries," Ecological Economics, Elsevier, vol. 70(11), pages 1981-1990, September.
    8. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    9. Abel Ortego & Alicia Valero & Antonio Valero & Eliette Restrepo, 2018. "Vehicles and Critical Raw Materials: A Sustainability Assessment Using Thermodynamic Rarity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1005-1015, October.
    10. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    11. Valero, Alicia & Valero, Antonio & Stanek, Wojciech, 2018. "Assessing the exergy degradation of the natural capital: From Szargut's updated reference environment to the new thermoecological-cost methodology," Energy, Elsevier, vol. 163(C), pages 1140-1149.
    12. Valero, Alicia & Valero, Antonio & Vieillard, Philippe, 2012. "The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy," Energy, Elsevier, vol. 41(1), pages 121-127.
    13. Guiomar Calvo & Alicia Valero & Luis Gabriel Carmona & Kai Whiting, 2015. "Physical Assessment of the Mineral Capital of a Nation: The Case of an Importing and an Exporting Country," Resources, MDPI, vol. 4(4), pages 1-14, November.
    14. Henckens, M.L.C.M. & van Ierland, E.C. & Driessen, P.P.J. & Worrell, E., 2016. "Mineral resources: Geological scarcity, market price trends, and future generations," Resources Policy, Elsevier, vol. 49(C), pages 102-111.
    15. Valero, Antonio & Palacino, Bárbara & Ascaso, Sonia & Valero, Alicia, 2022. "Exergy assessment of topsoil fertility," Ecological Modelling, Elsevier, vol. 464(C).
    16. Antonio Valero & Alicia Valero, 2015. "Thermodynamic Rarity and the Loss of Mineral Wealth," Energies, MDPI, vol. 8(2), pages 1-16, January.
    17. Gonzalez-Martinez, Ana Citlalic & Schandl, Heinz, 2008. "The biophysical perspective of a middle income economy: Material flows in Mexico," Ecological Economics, Elsevier, vol. 68(1-2), pages 317-327, December.
    18. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    19. Latorre, Sara & Farrell, Katharine N. & Martínez-Alier, Joan, 2015. "The commodification of nature and socio-environmental resistance in Ecuador: An inventory of accumulation by dispossession cases, 1980–2013," Ecological Economics, Elsevier, vol. 116(C), pages 58-69.
    20. LaRota-Aguilera, María José & Delgadillo-Vargas, Olga Lucía & Tello, Enric, 2022. "Sociometabolic research in Latin America: A review on advances and knowledge gaps in agroecological trends and rural perspectives," Ecological Economics, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:723-:d:135017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.