IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v459y2021ics0304380021002830.html
   My bibliography  Save this article

A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment

Author

Listed:
  • Sadchatheeswaran, Saachi
  • Branch, George M.
  • Shannon, Lynne J.
  • Coll, Marta
  • Steenbeek, Jeroen

Abstract

In a prequel to this paper, we used non-spatial temporal modelling to investigate the impact of non-native ecosystem engineers on a small-scale, intertidal rocky shore in Saldanha Bay, on the west coast of South Africa, where invasive species have changed the physical environment between 1980 and 2015. However, we considered this approach incomplete without the direct inclusion of spatial modelling and zonation. To address this, we compared multiple, layered simulations employing the food-web approach of Ecospace, the spatial-temporal module of Ecopath with Ecosim (EwE). Our simulations included a control; a simulation that restricted drivers to depth and habitat preferences; two simulations to account for structural complexity as a function of the biomass of alien ecosystem engineers – the first indirectly via mediation, and the second via a novel plug-in ‘Ecoengineer’ – and lastly the inclusion of wave action to replicate its effects. Only the simulation that included the Ecoengineer routine matched empirical observations of species diversity indices and the exclusion of the native mussel Choromytilus meridionalis by the arriving alien Mytilus galloprovincialis. Inclusion of mediation did not differ from the model simulation that used only habitat preference and depth to drive the model, and the addition of wave action did not improve model fits. Our results emphasise that when analysing intertidal ecosystems, they should be modelled with an explicit representation of structural habitat complexity over time and space, and we consider that the application of our Ecoengineer plug-in is an effective and novel way of accomplishing this.

Suggested Citation

  • Sadchatheeswaran, Saachi & Branch, George M. & Shannon, Lynne J. & Coll, Marta & Steenbeek, Jeroen, 2021. "A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment," Ecological Modelling, Elsevier, vol. 459(C).
  • Handle: RePEc:eee:ecomod:v:459:y:2021:i:c:s0304380021002830
    DOI: 10.1016/j.ecolmodel.2021.109731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadchatheeswaran, Saachi & Branch, George M & Shannon, Lynne J & Moloney, Coleen L & Coll, Marta & Robinson, Tamara B, 2020. "Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island," Ecological Modelling, Elsevier, vol. 433(C).
    2. Langseth, Brian J. & Rogers, Mark & Zhang, Hongyan, 2012. "Modeling species invasions in Ecopath with Ecosim: An evaluation using Laurentian Great Lakes models," Ecological Modelling, Elsevier, vol. 247(C), pages 251-261.
    3. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    4. Ortiz, Marco & Campos, Leonardo & Berrios, Fernando & Rodriguez, Fabián & Hermosillo, Brenda & González, Jorge, 2013. "Network properties and keystoneness assessment in different intertidal communities dominated by two ecosystem engineer species (SE Pacific coast): A comparative analysis," Ecological Modelling, Elsevier, vol. 250(C), pages 307-318.
    5. Blackwell, P.G., 2007. "Heterogeneity, patchiness and correlation of resources," Ecological Modelling, Elsevier, vol. 207(2), pages 349-355.
    6. Ortiz, Marco & Avendaño, Miguel & Campos, Leonardo & Berrios, Fernando, 2009. "Spatial and mass balanced trophic models of La Rinconada Marine Reserve (SE Pacific coast), a protected benthic ecosystem: Management strategy assessment," Ecological Modelling, Elsevier, vol. 220(23), pages 3413-3423.
    7. Espinosa-Romero, Maria J. & Gregr, Edward J. & Walters, Carl & Christensen, Villy & Chan, Kai M.A., 2011. "Representing mediating effects and species reintroductions in Ecopath with Ecosim," Ecological Modelling, Elsevier, vol. 222(9), pages 1569-1579.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadchatheeswaran, Saachi & Branch, George M & Shannon, Lynne J & Moloney, Coleen L & Coll, Marta & Robinson, Tamara B, 2020. "Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island," Ecological Modelling, Elsevier, vol. 433(C).
    2. Ortiz, Marco & Berrios, Fernando & Campos, Leonardo & Uribe, Roberto & Ramirez, Alejandro & Hermosillo-Núñez, Brenda & González, Jorge & Rodriguez-Zaragoza, Fabián, 2015. "Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human ," Ecological Modelling, Elsevier, vol. 309, pages 153-162.
    3. Whitehouse, George A. & Aydin, Kerim Y., 2020. "Assessing the sensitivity of three Alaska marine food webs to perturbations: an example of Ecosim simulations using Rpath," Ecological Modelling, Elsevier, vol. 429(C).
    4. Weizhong Su & Gaobin Ye, 2014. "Differences of Soil Fertility in Farmland Occupation and Supplement Areas in the Taihu Lake Watershed during 1985–2010," IJERPH, MDPI, vol. 11(6), pages 1-15, May.
    5. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    6. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    7. Siyu Miao & Yang Xiao & Ling Tang, 2022. "Urban Growth Simulation Based on a Multi-Dimension Classification of Growth Types: Implications for China’s Territory Spatial Planning," Land, MDPI, vol. 11(12), pages 1-14, December.
    8. Savoca, S. & Grifó, G. & Panarello, G. & Albano, M. & Giacobbe, S. & Capillo, G. & Spanó, N. & Consolo, G., 2020. "Modelling prey-predator interactions in Messina beachrock pools," Ecological Modelling, Elsevier, vol. 434(C).
    9. Ida Bagus Ilham Malik & Bart Julien Dewancker, 2018. "Identification of Population Growth and Distribution, Based on Urban Zone Functions," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    10. Huan Lu & Ruiyang Wang & Rong Ye & Jinzhao Fan, 2023. "Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China," Land, MDPI, vol. 12(1), pages 1-23, January.
    11. Yongyi Cheng & Tianyuan Shao & Huilin Lai & Manhong Shen & Yi Li, 2019. "Total-Factor Eco-Efficiency and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    12. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    13. Xindong Du & Xiaobin Jin & Xilian Yang & Xuhong Yang & Yinkang Zhou, 2014. "Spatial Pattern of Land Use Change and Its Driving Force in Jiangsu Province," IJERPH, MDPI, vol. 11(3), pages 1-18, March.
    14. Jiaying Zhang & Yi Chen & Xuhong Yang & Wenyi Qiao & Danyang Wang, 2022. "The Demarcation of Urban Development Boundary Based on the Maxent-CA Model: A Case Study of Wuxi in China," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    15. Lei Wang & Cecilia Wong & Xuejun Duan, 2016. "Urban growth and spatial restructuring patterns: The case of Yangtze River Delta Region, China," Environment and Planning B, , vol. 43(3), pages 515-539, May.
    16. Minmin Li & Zengxiang Zhang & Danny Lo Seen & Jian Sun & Xiaoli Zhao, 2016. "Spatiotemporal Characteristics of Urban Sprawl in Chinese Port Cities from 1979 to 2013," Sustainability, MDPI, vol. 8(11), pages 1-23, November.
    17. Han Li & Ye Hua Dennis Wei & Zhiji Huang, 2014. "Urban Land Expansion and Spatial Dynamics in Globalizing Shanghai," Sustainability, MDPI, vol. 6(12), pages 1-20, December.
    18. Uzodigwe Emmanuel Nnanwuba & Shengwu Qin & Oluwafemi Adewole Adeyeye & Ndichie Chinemelu Cosmas & Jingyu Yao & Shuangshuang Qiao & Sun Jingbo & Ekene Mathew Egwuonwu, 2022. "Prediction of Spatial Likelihood of Shallow Landslide Using GIS-Based Machine Learning in Awgu, Southeast/Nigeria," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    19. Kai Jin & Fei Wang & Pengfei Li, 2018. "Responses of Vegetation Cover to Environmental Change in Large Cities of China," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    20. Apriesnig, Jenny L. & Warziniack, Travis W. & Finnoff, David C. & Zhang, Hongyan & Lee, Katherine D. & Mason, Doran M. & Rutherford, Edward S., 2022. "The consequences of misrepresenting feedbacks in coupled human and environmental models," Ecological Economics, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:459:y:2021:i:c:s0304380021002830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.