IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v433y2020ics0304380020302970.html
   My bibliography  Save this article

Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island

Author

Listed:
  • Sadchatheeswaran, Saachi
  • Branch, George M
  • Shannon, Lynne J
  • Moloney, Coleen L
  • Coll, Marta
  • Robinson, Tamara B

Abstract

Between 1980 and 2012, successive arrivals by three alien ecosystem engineers on a rocky shore community at Marcus Island on the west coast of South Africa led to substantial changes in species composition and diversity. An ecosystem analysis of this open intertidal system was developed using Ecopath with Ecosim to determine the impacts of these aliens and the services they provide on the native community. A baseline Ecopath model of the community in 2015 was generated using values of biomass, production/biomass, consumption/biomass and the dietary composition of 30 functional groups. Ecosim, a time-dynamic modelling routine, was then used to simulate the changes in biomass of native species. A 1980 model (pre-invasion) was constructed and 22 simulations were run up to 2015 by systematically adding (1) biomass time series for non-native species; (2) relative biomass time series for native species; (3) mediation functions that mimicked biomass impacts due to changes in substrate, shelter and feeding grounds created by the alien ecosystem engineers; and (4) the effects of wave action as a source of mortality. Positive or negative influences of these ecological processes on diversity and the final biomasses of all groups in 2015 were assessed. Trophic impacts by the alien species affected diversity and biomass at the end of all simulations, but the addition of shelter or a combination of all three ecosystem services provided by ecosystem engineers (shelter, substrate and feeding grounds) resulted in 2015 model ecosystems that most closely matched the diversity and individual group biomasses empirically measured on Marcus Island in 2015. Wave action had only a minor impact. Marcus Island's rocky shore community was therefore driven mainly by the fixed input of alien species biomass and made more realistic by the incorporation of their ecosystem services. However, structural complexity and zonation, explored in a follow-up paper invoking spatial modelling, need to be represented for a more complete realisation of the ecosystem.

Suggested Citation

  • Sadchatheeswaran, Saachi & Branch, George M & Shannon, Lynne J & Moloney, Coleen L & Coll, Marta & Robinson, Tamara B, 2020. "Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island," Ecological Modelling, Elsevier, vol. 433(C).
  • Handle: RePEc:eee:ecomod:v:433:y:2020:i:c:s0304380020302970
    DOI: 10.1016/j.ecolmodel.2020.109227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langseth, Brian J. & Rogers, Mark & Zhang, Hongyan, 2012. "Modeling species invasions in Ecopath with Ecosim: An evaluation using Laurentian Great Lakes models," Ecological Modelling, Elsevier, vol. 247(C), pages 251-261.
    2. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    3. Ortiz, Marco & Campos, Leonardo & Berrios, Fernando & Rodriguez, Fabián & Hermosillo, Brenda & González, Jorge, 2013. "Network properties and keystoneness assessment in different intertidal communities dominated by two ecosystem engineer species (SE Pacific coast): A comparative analysis," Ecological Modelling, Elsevier, vol. 250(C), pages 307-318.
    4. Ramírez, Alejandro & Ortiz, Marco & Steenbeek, Jeroen & Christensen, Villy, 2015. "Evaluation of the effects on rockfish and kelp artisanal fisheries of the proposed Mejillones Peninsula marine protected area (northern Chile, SE Pacific coast)," Ecological Modelling, Elsevier, vol. 297(C), pages 141-153.
    5. Ma, Hongguang & Townsend, Howard & Zhang, Xinsheng & Sigrist, Maddy & Christensen, Villy, 2010. "Using a fisheries ecosystem model with a water quality model to explore trophic and habitat impacts on a fisheries stock: A case study of the blue crab population in the Chesapeake Bay," Ecological Modelling, Elsevier, vol. 221(7), pages 997-1004.
    6. Hossain, Md. Monir & Matsuishi, Takashi & Arhonditsis, George, 2010. "Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)," Ecological Modelling, Elsevier, vol. 221(13), pages 1717-1730.
    7. Pinnegar, John K. & Tomczak, Maciej T. & Link, Jason S., 2014. "How to determine the likely indirect food-web consequences of a newly introduced non-native species: A worked example," Ecological Modelling, Elsevier, vol. 272(C), pages 379-387.
    8. Kumar, Rajeev & Varkey, Divya & Pitcher, Tony, 2016. "Simulation of zebra mussels (Dreissena polymorpha) invasion and evaluation of impacts on Mille Lacs Lake, Minnesota: An ecosystem model," Ecological Modelling, Elsevier, vol. 331(C), pages 68-76.
    9. Espinosa-Romero, Maria J. & Gregr, Edward J. & Walters, Carl & Christensen, Villy & Chan, Kai M.A., 2011. "Representing mediating effects and species reintroductions in Ecopath with Ecosim," Ecological Modelling, Elsevier, vol. 222(9), pages 1569-1579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadchatheeswaran, Saachi & Branch, George M. & Shannon, Lynne J. & Coll, Marta & Steenbeek, Jeroen, 2021. "A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment," Ecological Modelling, Elsevier, vol. 459(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    2. Sadchatheeswaran, Saachi & Branch, George M. & Shannon, Lynne J. & Coll, Marta & Steenbeek, Jeroen, 2021. "A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment," Ecological Modelling, Elsevier, vol. 459(C).
    3. Han, Dongyan & Chen, Yong & Zhang, Chongliang & Ren, Yiping & Xue, Ying & Wan, Rong, 2017. "Evaluating impacts of intensive shellfish aquaculture on a semi-closed marine ecosystem," Ecological Modelling, Elsevier, vol. 359(C), pages 193-200.
    4. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    5. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    6. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    7. Ricci, P. & Serpetti, N. & Cascione, D. & Cipriano, G. & D'Onghia, G. & De Padova, D. & Fanizza, C. & Ingrosso, M. & Carlucci, R., 2023. "Investigating fishery and climate change effects on the conservation status of odontocetes in the Northern Ionian Sea (Central Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 485(C).
    8. Ortiz, Marco & Berrios, Fernando & Campos, Leonardo & Uribe, Roberto & Ramirez, Alejandro & Hermosillo-Núñez, Brenda & González, Jorge & Rodriguez-Zaragoza, Fabián, 2015. "Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human ," Ecological Modelling, Elsevier, vol. 309, pages 153-162.
    9. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    10. Gray DiLeone, A.M. & Ainsworth, C.H., 2019. "Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf," Ecological Modelling, Elsevier, vol. 392(C), pages 250-267.
    11. Savoca, S. & Grifó, G. & Panarello, G. & Albano, M. & Giacobbe, S. & Capillo, G. & Spanó, N. & Consolo, G., 2020. "Modelling prey-predator interactions in Messina beachrock pools," Ecological Modelling, Elsevier, vol. 434(C).
    12. Apriesnig, Jenny L. & Warziniack, Travis W. & Finnoff, David C. & Zhang, Hongyan & Lee, Katherine D. & Mason, Doran M. & Rutherford, Edward S., 2022. "The consequences of misrepresenting feedbacks in coupled human and environmental models," Ecological Economics, Elsevier, vol. 195(C).
    13. Perryman, Holly A. & Tarnecki, Joseph H. & Grüss, Arnaud & Babcock, Elizabeth A. & Sagarese, Skyler R. & Ainsworth, Cameron H. & Gray DiLeone, Alisha M., 2020. "A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts," Ecological Modelling, Elsevier, vol. 416(C).
    14. Natugonza, Vianny & Ogutu-Ohwayo, Richard & Musinguzi, Laban & Kashindye, Benedicto & Jónsson, Steingrímur & Valtysson, Hreidar Thor, 2016. "Exploring the structural and functional properties of the Lake Victoria food web, and the role of fisheries, using a mass balance model," Ecological Modelling, Elsevier, vol. 342(C), pages 161-174.
    15. Püts, Miriam & Taylor, Marc & Núñez-Riboni, Ismael & Steenbeek, Jeroen & Stäbler, Moritz & Möllmann, Christian & Kempf, Alexander, 2020. "Insights on integrating habitat preferences in process-oriented ecological models – a case study of the southern North Sea," Ecological Modelling, Elsevier, vol. 431(C).
    16. Ofir, E. & Heymans, J.J. & Shapiro, J. & Goren, M. & Spanier, E. & Gal, G., 2017. "Predicting the impact of Lake Biomanipulation based on food-web modeling—Lake Kinneret as a case study," Ecological Modelling, Elsevier, vol. 348(C), pages 14-24.
    17. Lucey, Sean M. & Gaichas, Sarah K. & Aydin, Kerim Y., 2020. "Conducting reproducible ecosystem modeling using the open source mass balance model Rpath," Ecological Modelling, Elsevier, vol. 427(C).
    18. Heinichen, Margaret & McManus, M. Conor & Lucey, Sean M. & Aydin, Kerim & Humphries, Austin & Innes-Gold, Anne & Collie, Jeremy, 2022. "Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model," Ecological Modelling, Elsevier, vol. 466(C).
    19. Paoli, C. & Povero, P. & Burgos, E. & Dapueto, G. & Fanciulli, G. & Massa, F. & Scarpellini, P. & Vassallo, P., 2018. "Natural capital and environmental flows assessment in marine protected areas: The case study of Liguria region (NW Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 368(C), pages 121-135.
    20. Ye, Sufen & Zhang, Luoping & Feng, Huan, 2020. "Ecosystem intrinsic value and its evaluation," Ecological Modelling, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:433:y:2020:i:c:s0304380020302970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.