IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v247y2012icp251-261.html
   My bibliography  Save this article

Modeling species invasions in Ecopath with Ecosim: An evaluation using Laurentian Great Lakes models

Author

Listed:
  • Langseth, Brian J.
  • Rogers, Mark
  • Zhang, Hongyan

Abstract

Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species biomass at low values. In general, for understanding the effect of invasive species on future fisheries management actions, we recommend initiating invasive species biomass at low levels based on the greater simplicity and realism of the method compared to others.

Suggested Citation

  • Langseth, Brian J. & Rogers, Mark & Zhang, Hongyan, 2012. "Modeling species invasions in Ecopath with Ecosim: An evaluation using Laurentian Great Lakes models," Ecological Modelling, Elsevier, vol. 247(C), pages 251-261.
  • Handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:251-261
    DOI: 10.1016/j.ecolmodel.2012.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012004267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stewart, Thomas. J. & Sprules, W. Gary, 2011. "Carbon-based balanced trophic structure and flows in the offshore Lake Ontario food web before (1987–1991) and after (2001–2005) invasion-induced ecosystem change," Ecological Modelling, Elsevier, vol. 222(3), pages 692-708.
    2. Walters, Carl & Christensen, Villy, 2007. "Adding realism to foraging arena predictions of trophic flow rates in Ecosim ecosystem models: Shared foraging arenas and bout feeding," Ecological Modelling, Elsevier, vol. 209(2), pages 342-350.
    3. Espinosa-Romero, Maria J. & Gregr, Edward J. & Walters, Carl & Christensen, Villy & Chan, Kai M.A., 2011. "Representing mediating effects and species reintroductions in Ecopath with Ecosim," Ecological Modelling, Elsevier, vol. 222(9), pages 1569-1579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadchatheeswaran, Saachi & Branch, George M & Shannon, Lynne J & Moloney, Coleen L & Coll, Marta & Robinson, Tamara B, 2020. "Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island," Ecological Modelling, Elsevier, vol. 433(C).
    2. Sadchatheeswaran, Saachi & Branch, George M. & Shannon, Lynne J. & Coll, Marta & Steenbeek, Jeroen, 2021. "A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment," Ecological Modelling, Elsevier, vol. 459(C).
    3. Kumar, Rajeev & Varkey, Divya & Pitcher, Tony, 2016. "Simulation of zebra mussels (Dreissena polymorpha) invasion and evaluation of impacts on Mille Lacs Lake, Minnesota: An ecosystem model," Ecological Modelling, Elsevier, vol. 331(C), pages 68-76.
    4. Langseth, Brian J. & Jones, Michael L. & Riley, Stephen C., 2014. "The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron," Ecological Modelling, Elsevier, vol. 273(C), pages 44-54.
    5. Apriesnig, Jenny L. & Warziniack, Travis W. & Finnoff, David C. & Zhang, Hongyan & Lee, Katherine D. & Mason, Doran M. & Rutherford, Edward S., 2022. "The consequences of misrepresenting feedbacks in coupled human and environmental models," Ecological Economics, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langseth, Brian J. & Jones, Michael L. & Riley, Stephen C., 2014. "The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron," Ecological Modelling, Elsevier, vol. 273(C), pages 44-54.
    2. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    3. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    4. Ricci, P. & Serpetti, N. & Cascione, D. & Cipriano, G. & D'Onghia, G. & De Padova, D. & Fanizza, C. & Ingrosso, M. & Carlucci, R., 2023. "Investigating fishery and climate change effects on the conservation status of odontocetes in the Northern Ionian Sea (Central Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 485(C).
    5. Bacalso, Regina Therese M. & Wolff, Matthias & Rosales, Rina Maria & Armada, Nygiel B., 2016. "Effort reallocation of illegal fishing operations: A profitable scenario for the municipal fisheries of Danajon Bank, Central Philippines," Ecological Modelling, Elsevier, vol. 331(C), pages 5-16.
    6. Bentley, Jacob W. & Serpetti, Natalia & Heymans, Johanna Jacomina, 2017. "Investigating the potential impacts of ocean warming on the Norwegian and Barents Seas ecosystem using a time-dynamic food-web model," Ecological Modelling, Elsevier, vol. 360(C), pages 94-107.
    7. Angelini, Ronaldo & de Morais, Ronny José & Catella, Agostinho Carlos & Resende, Emiko Kawakami & Libralato, Simone, 2013. "Aquatic food webs of the oxbow lakes in the Pantanal: A new site for fisheries guaranteed by alternated control?," Ecological Modelling, Elsevier, vol. 253(C), pages 82-96.
    8. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    9. Libralato, Simone & Solidoro, Cosimo, 2009. "Bridging biogeochemical and food web models for an End-to-End representation of marine ecosystem dynamics: The Venice lagoon case study," Ecological Modelling, Elsevier, vol. 220(21), pages 2960-2971.
    10. Walters, Carl & Christensen, Villy, 2019. "Effect of non-additivity in mortality rates on predictions of potential yield of forage fishes," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    11. Overholtz, William & Link, Jason, 2009. "A simulation model to explore the response of the Gulf of Maine food web to large-scale environmental and ecological changes," Ecological Modelling, Elsevier, vol. 220(19), pages 2491-2502.
    12. Sadchatheeswaran, Saachi & Branch, George M & Shannon, Lynne J & Moloney, Coleen L & Coll, Marta & Robinson, Tamara B, 2020. "Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island," Ecological Modelling, Elsevier, vol. 433(C).
    13. Wilen, Christopher D. & Wilen, James E., 2012. "Fishing down the food chain revisited: Modeling exploited trophic systems," Ecological Economics, Elsevier, vol. 79(C), pages 80-88.
    14. Heinichen, Margaret & McManus, M. Conor & Lucey, Sean M. & Aydin, Kerim & Humphries, Austin & Innes-Gold, Anne & Collie, Jeremy, 2022. "Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model," Ecological Modelling, Elsevier, vol. 466(C).
    15. Hoover, Carie & Pitcher, Tony & Christensen, Villy, 2013. "Effects of hunting, fishing and climate change on the Hudson Bay marine ecosystem: I. Re-creating past changes 1970–2009," Ecological Modelling, Elsevier, vol. 264(C), pages 130-142.
    16. Sadchatheeswaran, Saachi & Branch, George M. & Shannon, Lynne J. & Coll, Marta & Steenbeek, Jeroen, 2021. "A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment," Ecological Modelling, Elsevier, vol. 459(C).
    17. Stäbler, Moritz & Kempf, Alexander & Mackinson, Steven & Poos, Jan Jaap & Garcia, Clement & Temming, Axel, 2016. "Combining efforts to make maximum sustainable yields and good environmental status match in a food-web model of the southern North Sea," Ecological Modelling, Elsevier, vol. 331(C), pages 17-30.
    18. Romagnoni, Giovanni & Mackinson, Steven & Hong, Jiang & Eikeset, Anne Maria, 2015. "The Ecospace model applied to the North Sea: Evaluating spatial predictions with fish biomass and fishing effort data," Ecological Modelling, Elsevier, vol. 300(C), pages 50-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:251-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.