IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v456y2021ics0304380021002179.html
   My bibliography  Save this article

Projecting complex interactions between forest harvest and succession in the northern Acadian Forest Region

Author

Listed:
  • Simons-Legaard, Erin
  • Legaard, Kasey
  • Weiskittel, Aaron

Abstract

Preventing declines of native and historically-abundant tree species is an important aspect of sustainable forest management, but predicting future forest composition is challenging when succession does not tend to follow a well-defined path. We evaluated the implications of site-level interactions between timber harvesting and forest succession on the regional landscape dynamics of the complex and species-rich northern Acadian Forest Region. Our expectation was that forest composition would trend away from long-lived and shade-tolerant species, because rates of landscape disturbance from timber harvesting are high relative to historic rates of natural disturbance. We used a novel modeling approach that combined Landsat-derived time series of forest disturbance to inform realistic simulations of timber harvesting across many individual commercial forest landowners using LANDIS-II, and evaluated changes in tree species’ distributions and abundance with and without harvesting. Detailed descriptions of initial forest conditions were derived from maps of relative tree species abundance, developed using Landsat satellite imagery, regional inventory data, and an innovative machine learning algorithm. If recent harvest rates persist, simulations suggest timber harvesting will generally be sustainable in our study area; however, projected rates of site-level species turnover were high, predominantly favoring species that were less abundant under the region's natural disturbance regime. As a result, broad-scale patterns of projected species co-occurrence shifted, destabilizing important regional forest types. Our results highlight both the region's capacity for forest growth and the importance of accurately capturing the local effects of land management when projecting forested regions dominated by commercial ownership.

Suggested Citation

  • Simons-Legaard, Erin & Legaard, Kasey & Weiskittel, Aaron, 2021. "Projecting complex interactions between forest harvest and succession in the northern Acadian Forest Region," Ecological Modelling, Elsevier, vol. 456(C).
  • Handle: RePEc:eee:ecomod:v:456:y:2021:i:c:s0304380021002179
    DOI: 10.1016/j.ecolmodel.2021.109657
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simons-Legaard, Erin & Legaard, Kasey & Weiskittel, Aaron, 2015. "Predicting aboveground biomass with LANDIS-II: A global and temporal analysis of parameter sensitivity," Ecological Modelling, Elsevier, vol. 313(C), pages 325-332.
    2. Scheller, Robert M. & Domingo, James B. & Sturtevant, Brian R. & Williams, Jeremy S. & Rudy, Arnold & Gustafson, Eric J. & Mladenoff, David J., 2007. "Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution," Ecological Modelling, Elsevier, vol. 201(3), pages 409-419.
    3. Kasey R Legaard & Steven A Sader & Erin M Simons-Legaard, 2015. "Evaluating the Impact of Abrupt Changes in Forest Policy and Management Practices on Landscape Dynamics: Analysis of a Landsat Image Time Series in the Atlantic Northern Forest," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-24, June.
    4. de Bruijn, Arjan & Gustafson, Eric J. & Sturtevant, Brian R. & Foster, Jane R. & Miranda, Brian R. & Lichti, Nathanael I. & Jacobs, Douglass F., 2014. "Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II," Ecological Modelling, Elsevier, vol. 287(C), pages 44-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daigneault, Adam & Simons-Legaard, Erin & Weiskittel, Aaron, 2024. "Tradeoffs and synergies of optimized management for maximizing carbon sequestration across complex landscapes and diverse ecosystem services," Forest Policy and Economics, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daigneault, Adam & Simons-Legaard, Erin & Weiskittel, Aaron, 2024. "Tradeoffs and synergies of optimized management for maximizing carbon sequestration across complex landscapes and diverse ecosystem services," Forest Policy and Economics, Elsevier, vol. 161(C).
    2. Gustafson, Eric J. & Sturtevant, Brian R. & Miranda, Brian R. & Duveneck, Matthew J., 2024. "Overcoming conceptual hurdles to accurately represent trees as cohorts in forest landscape models," Ecological Modelling, Elsevier, vol. 490(C).
    3. Zhuo Wu & Quansheng Ge & Erfu Dai, 2017. "Modeling the Relative Contributions of Land Use Change and Harvest to Forest Landscape Change in the Taihe County, China," Sustainability, MDPI, vol. 9(5), pages 1-17, April.
    4. Zhao, Jianheng & Daigneault, Adam & Weiskittel, Aaron & Wei, Xinyuan, 2023. "Climate and socioeconomic impacts on Maine's forests under alternative future pathways," Ecological Economics, Elsevier, vol. 214(C).
    5. Furniss, Tucker J. & Hessburg, Paul F. & Povak, Nicholas A. & Salter, R. Brion & Wigmosta, Mark S., 2022. "Predicting future patterns, processes, and their interactions: Benchmark calibration and validation procedures for forest landscape models," Ecological Modelling, Elsevier, vol. 473(C).
    6. Cécile C. Remy & Alisa R. Keyser & Dan J. Krofcheck & Marcy E. Litvak & Matthew D. Hurteau, 2021. "Future fire-driven landscape changes along a southwestern US elevation gradient," Climatic Change, Springer, vol. 166(3), pages 1-20, June.
    7. Scheller, Robert & Kretchun, Alec & Hawbaker, Todd J. & Henne, Paul D., 2019. "A landscape model of variable social-ecological fire regimes," Ecological Modelling, Elsevier, vol. 401(C), pages 85-93.
    8. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    9. Ager, Alan A. & Barros, Ana M.G. & Day, Michelle A. & Preisler, Haiganoush K. & Spies, Thomas A. & Bolte, John, 2018. "Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model," Ecological Modelling, Elsevier, vol. 384(C), pages 87-102.
    10. Wang, Qinying & He, Hong S. & Liu, Kai & Zong, Shengwei & Du, Haibo, 2023. "Comparing simulated tree biomass from daily, monthly, and seasonal climate input of terrestrial ecosystem model," Ecological Modelling, Elsevier, vol. 483(C).
    11. Conlisk, Erin & Syphard, Alexandra D. & Franklin, Janet & Regan, Helen M., 2015. "Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model," Ecological Modelling, Elsevier, vol. 301(C), pages 27-39.
    12. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    13. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    14. Haga, Chihiro & Hotta, Wataru & Inoue, Takahiro & Matsui, Takanori & Aiba, Masahiro & Owari, Toshiaki & Suzuki, Satoshi N. & Shibata, Hideaki & Morimoto, Junko, 2022. "Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change," Ecological Modelling, Elsevier, vol. 472(C).
    15. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    16. Fabritius, Henna & Knegt, Henrik de & Ovaskainen, Otso, 2021. "Effects of a mobile disturbance pattern on dynamic patch networks and metapopulation persistence," Ecological Modelling, Elsevier, vol. 460(C).
    17. Karam, Sarah L. & Weisberg, Peter J. & Scheller, Robert M. & Johnson, Dale W. & Miller, W. Wally, 2013. "Development and evaluation of a nutrient cycling extension for the LANDIS-II landscape simulation model," Ecological Modelling, Elsevier, vol. 250(C), pages 45-57.
    18. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    19. Arseneault, Justin E. & Saunders, Mike R., 2012. "Incorporating canopy gap-induced growth responses into spatially implicit growth model projections," Ecological Modelling, Elsevier, vol. 237, pages 120-131.
    20. Chonggang Xu & George Gertner & Robert Scheller, 2012. "Importance of colonization and competition in forest landscape response to global climatic change," Climatic Change, Springer, vol. 110(1), pages 53-83, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:456:y:2021:i:c:s0304380021002179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.